Skip to main content

Roles of Nanotechnology for Efficient Nutrient Delivery of Foods

  • Chapter
  • First Online:
Application of Nanotechnology in Food Science, Processing and Packaging
  • 455 Accesses

Abstract

Nanotechnology involves the use of materials in the nanoscale for different purposes. Applications of nanotechnology in food science and food industry is a fast growing area nowadays. These applications involves the use of nanomaterials in food coatings to protect the food from moisture and microorganisms, the use of stronger flavors and coloring nanomaterials to improve the appearance and taste of food, to facilitate delivery of nutrients and most widely the nanometerials are used in packaging of food. Despite the advance in the applications of nanotechnology of food, still large number of publics refuse to use such processed food especially that there are few studies on the safety and toxicity of such products. In our chapter we will have an overview on food grade and non-food grade nanoparticles that are used for nutraceutical delivery in addition to the health hazards related to nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Application of nanotechnology in food science: perception and overview. Front Microbiol. 2017;8:1501.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pathakoti K, Manubolu M, Hwang H-M. Nanostructures: current uses and future applications in food science. J Food Drug Anal. 2017;25(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  3. Wahab A, Rahim AA, Hassan S, Egbuna C, Manzoor MF, Okere KJ, Walag AMP. Application of nanotechnology in the packaging of edible materials. In: Egbuna C, Mishra AP, Goyal MR, editors. Preparation of phytopharmaceuticals for the management of disorders. Academic Press; 2021. p. 215–25.

    Google Scholar 

  4. Ottaway P. Nanotechnology in supplements and foods–EU concerns. Nutraceuticals International; 2009. p. 1.

    Google Scholar 

  5. Ennajar M, Bouajila J, Lebrihi A, Mathieu F, Abderraba M, Raies A, et al. Chemical composition and antimicrobial and antioxidant activities of essential oils and various extracts of Juniperus phoenicea L.(Cupressacees). J Food Sci. 2009;74(7):M364–M71.

    Article  CAS  PubMed  Google Scholar 

  6. Shimoni E. Nanotechnology for foods: focus on delivering health. In: Mortimer A, Colonna P, Lineback D, Spiess W, Buckle K, Barbosa-Canovas G, editors. Global issues in food science and technology. Amsterdam: Elsevier; 2009. p. 411–24.

    Chapter  Google Scholar 

  7. Chen H, Weiss J, Shahidi F. Nanotechnology in nutraceuticals and functional foods. Food Technol. 2006;60(3):30–6.

    CAS  Google Scholar 

  8. Azeredo HM, Mattoso LHC, Wood D, Williams TG, Avena‐Bustillos RJ, McHugh TH. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci. 2009;74(5):N31–N5.

    Article  CAS  PubMed  Google Scholar 

  9. Kampers FW. Opportunities for bionanotechnology in food and the food industry. Bionanotechnol Glob Prosp. 2008:79–90.

    Google Scholar 

  10. Mishra V, Bansal KK, Verma A, Yadav N, Thakur S, Sudhakar K, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191.

    Article  CAS  PubMed Central  Google Scholar 

  11. He X, Deng H, Hwang H-M. The current application of nanotechnology in food and agriculture. J Food Drug Anal. 2018;27(2019):1–21.

    PubMed  Google Scholar 

  12. Assadpour E, Mahdi JS. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr. 2019;59(19):3129–51.

    Article  CAS  PubMed  Google Scholar 

  13. Rashidi L. Different nano-delivery systems for delivery of nutraceuticals. Food Biosci. 2021;43:101258.

    Article  CAS  Google Scholar 

  14. Singh AR, Desu PK, Nakkala RK, Kondi V, Devi S, Alam MS, et al. Nanotechnology-based approaches applied to nutraceuticals. Drug Deliv Transl Res. 2022;12:485.

    Article  CAS  PubMed  Google Scholar 

  15. Kapoor MS, D’Souza A, Aibani N, Nair SS, Sandbhor P, Kumari D, et al. Stable liposome in cosmetic platforms for transdermal folic acid delivery for fortification and treatment of micronutrient deficiencies. Sci Rep. 2018;8(1):16122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu X, Wang P, Zou Y-X, Luo Z-G, Tamer TM. Co-encapsulation of vitamin C and β-carotene in liposomes: storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Res Int. 2020;136:109587.

    Article  CAS  PubMed  Google Scholar 

  17. Rovoli M, Pappas I, Lalas S, Gortzi O, Kontopidis G. In vitro and in vivo assessment of vitamin A encapsulation in a liposome-protein delivery system. J Lipos Res. 2019;29(2):142–52.

    Article  CAS  Google Scholar 

  18. Talebi V, Ghanbarzadeh B, Hamishehkar H, Pezeshki A, Ostadrahimi A. Effects of different stabilizers on colloidal properties and encapsulation efficiency of vitamin D3 loaded nano-niosomes. J Drug Deliv Sci Technol. 2021;61:101284.

    Article  CAS  Google Scholar 

  19. Peng S, Zou L, Zhou W, Liu W, Liu C, McClements DJ. Encapsulation of lipophilic polyphenols into nanoliposomes using pH-driven method: advantages and disadvantages. J Agric Food Chem. 2019;67(26):7506–11.

    Article  CAS  PubMed  Google Scholar 

  20. Gharehbeglou P, Jafari SM, Hamishekar H, Homayouni A, Mirzaei H. Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. J Food Eng. 2019;245:139–48.

    Article  CAS  Google Scholar 

  21. Zou L, Zheng B, Liu W, Liu C, Xiao H, McClements DJ. Enhancing nutraceutical bioavailability using excipient emulsions: influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. J Funct Foods. 2015;15:72–83.

    Article  CAS  Google Scholar 

  22. Salvia-Trujillo L, Qian C, Martín-Belloso O, McClements DJ. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chem. 2013;139(1):878–84.

    Article  CAS  PubMed  Google Scholar 

  23. Meng Q, Long P, Zhou J, Ho C-T, Zou X, Chen B, et al. Improved absorption of β-carotene by encapsulation in an oil-in-water nanoemulsion containing tea polyphenols in the aqueous phase. Food Res Int. 2019;116:731–6.

    Article  CAS  PubMed  Google Scholar 

  24. Peng Y, Meng Q, Zhou J, Chen B, Xi J, Long P, et al. Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem. 2018;242:527–32.

    Article  CAS  PubMed  Google Scholar 

  25. Karimi Yazdi M, Haniloo A, Ghaffari A, Torabi N. Antiparasitic effects of Zataria multiflora essential oil nano-emulsion on larval stages of Echinococcus granulosus. J Parasit Dis. 2020;44(2):429–35.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308.

    Article  CAS  PubMed  Google Scholar 

  27. Chirio D, Peira E, Dianzani C, Muntoni E, Gigliotti CL, Ferrara B, et al. Development of solid lipid nanoparticles by cold dilution of microemulsions: curcumin loading, preliminary in vitro studies, and biodistribution. Nanomaterials. 2019;9(2):230.

    Article  CAS  PubMed Central  Google Scholar 

  28. Shtay R, Keppler JK, Schrader K, Schwarz K. Encapsulation of (─)-epigallocatechin-3-gallate (EGCG) in solid lipid nanoparticles for food applications. J Food Eng. 2019;244:91–100.

    Article  CAS  Google Scholar 

  29. Huguet-Casquero A, Moreno-Sastre M, López-Méndez TB, Gainza E, Pedraz JL. Encapsulation of oleuropein in nanostructured lipid carriers: biocompatibility and antioxidant efficacy in lung epithelial cells. Pharmaceutics. 2020;12(5):429.

    Article  CAS  PubMed Central  Google Scholar 

  30. Kamel AE, Fadel M, Louis D. Curcumin-loaded nanostructured lipid carriers prepared using Peceol and olive oil in photodynamic therapy: development and application in breast cancer cell line. Int J Nanomedicine. 2019;14:5073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim ES, Lee J-S, Lee HG. Improvement of antithrombotic activity of red ginseng extract by nanoencapsulation using chitosan and antithrombotic cross-linkers: polyglutamic acid and fucoidan. J Ginseng Res. 2021;45(2):236–45.

    Article  PubMed  Google Scholar 

  32. Akbari-Alavijeh S, Shaddel R, Jafari SM. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocoll. 2020;105:105774.

    Article  CAS  Google Scholar 

  33. Cheba BA. Chitosan: properties, modifications and food nanobiotechnology. Proc Manufact. 2020;46:652–8.

    Article  Google Scholar 

  34. Wang Y, Zhou C, Ding Y, Liu M, Tai Z, Jin Q, et al. Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K1. Int J Pharm. 2021;592:120084.

    Article  CAS  PubMed  Google Scholar 

  35. Yilmaz MT, Yilmaz A, Akman PK, Bozkurt F, Dertli E, Basahel A, et al. Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties. Innovative Food Sci Emerg Technol. 2019;52:166–78.

    Article  CAS  Google Scholar 

  36. Liu J, Xiao J, Li F, Shi Y, Li D, Huang Q. Chitosan-sodium alginate nanoparticle as a delivery system for ε-polylysine: preparation, characterization and antimicrobial activity. Food Control. 2018;91:302–10.

    Article  CAS  Google Scholar 

  37. Du Z, Liu J, Zhang T, Yu Y, Zhang Y, Zhai J, et al. A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Food Chem. 2019;286:530–6.

    Article  CAS  PubMed  Google Scholar 

  38. Jiao W-H, Xu Q-H, Ge G-B, Shang R-Y, Zhu H-R, Liu H-Y, et al. Flavipesides A–C, PKS-NRPS hybrids as pancreatic lipase inhibitors from a marine sponge symbiotic fungus aspergillus flavipes 164013. Org Lett. 2020;22:1825.

    Article  CAS  PubMed  Google Scholar 

  39. Kim BS, Jung ID, Kim JS, Lee J-h, Lee IY, Lee KB. Curdlan gels as protein drug delivery vehicles. Biotechnol Lett. 2000;22(14):1127–30.

    Article  CAS  Google Scholar 

  40. Yu Y-B, Cai W-D, Wang Z-W, Yan J-K. Emulsifying properties of a ferulic acid-grafted curdlan conjugate and its contribution to the chemical stability of β-carotene. Food Chem. 2021;339:128053.

    Article  CAS  PubMed  Google Scholar 

  41. Yu Y-B, Wu M-Y, Wang C, Wang Z-W, Chen T-T, Yan J-K. Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation. Food Hydrocoll. 2020;108:106028.

    Article  CAS  Google Scholar 

  42. Ahmad M, Mudgil P, Gani A, Hamed F, Masoodi FA, Maqsood S. Nano-encapsulation of catechin in starch nanoparticles: characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem. 2019;270:95–104.

    Article  CAS  PubMed  Google Scholar 

  43. Remanan MK, Zhu F. Encapsulation of rutin using quinoa and maize starch nanoparticles. Food Chem. 2021;353:128534.

    Article  CAS  PubMed  Google Scholar 

  44. Liu C, Zhang Z, Kong Q, Zhang R, Yang X. Enhancing the antitumor activity of tea polyphenols encapsulated in biodegradable nanogels by macromolecular self-assembly. RSC Adv. 2019;9(18):10004–16.

    Article  CAS  Google Scholar 

  45. Dong Y, Wei Z, Xue C. Recent advances in carrageenan-based delivery systems for bioactive ingredients: a review. Trends Food Sci Technol. 2021;112:348–61.

    Article  CAS  Google Scholar 

  46. Yew H-C, Misran M. Preparation and characterization of pH dependent κ-carrageenan-chitosan nanoparticle as potential slow release delivery carrier. Iran Polym J. 2016;25(12):1037–46.

    Article  CAS  Google Scholar 

  47. Sun X, Pan C, Ying Z, Yu D, Duan X, Huang F, et al. Stabilization of zein nanoparticles with k-carrageenan and tween 80 for encapsulation of curcumin. Int J Biol Macromol. 2020;146:549–59.

    Article  CAS  PubMed  Google Scholar 

  48. Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci. 2010;15(1–2):73–83.

    Article  CAS  Google Scholar 

  49. Tang C-H. Assembly of food proteins for nano-encapsulation and delivery of nutraceuticals (a mini-review). Food Hydrocoll. 2021;117:106710.

    Article  CAS  Google Scholar 

  50. Liu G, Huang W, Babii O, Gong X, Tian Z, Yang J, et al. Novel protein-lipid composite nanoparticles with an inner aqueous compartment as delivery systems of hydrophilic nutraceutical compounds. Nanoscale. 2018;10(22):10629–40.

    Article  CAS  PubMed  Google Scholar 

  51. Pujara N, Wong KY, Qu Z, Wang R, Moniruzzaman M, Rewatkar P, et al. Oral delivery of β-lactoglobulin-nanosphere-encapsulated resveratrol alleviates inflammation in winnie mice with spontaneous ulcerative colitis. Mol Pharm. 2021;18(2):627–40.

    Article  CAS  PubMed  Google Scholar 

  52. Tang C-h. Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals. Food Hydrocoll. 2021;112:106344.

    Article  CAS  Google Scholar 

  53. Sadiq U, Gill H, Chandrapala J. Casein micelles as an emerging delivery system for bioactive food components. Foods. 2021;10(8):1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu G, Li L, Bao X, Yao P. Curcumin, casein and soy polysaccharide ternary complex nanoparticles for enhanced dispersibility, stability and oral bioavailability of curcumin. Food Biosci. 2020;35:100569.

    Article  CAS  Google Scholar 

  55. Du Z, Liu J, Zhang H, Chen Y, Wu X, Zhang Y, et al. L-Arginine/l-lysine functionalized chitosan-casein core-shell and pH-responsive nanoparticles: fabrication, characterization and bioavailability enhancement of hydrophobic and hydrophilic bioactive compounds. Food Funct. 2020;11(5):4638–47.

    Article  CAS  PubMed  Google Scholar 

  56. Ghatak D, Iyyaswami R. Selective encapsulation of quercetin from dry onion peel crude extract in reassembled casein particles. Food Bioprod Process. 2019;115:100–9.

    Article  CAS  Google Scholar 

  57. Karami E, Behdani M, Kazemi-Lomedasht F. Albumin nanoparticles as nanocarriers for drug delivery: focusing on antibody and nanobody delivery and albumin-based drugs. J Drug Deliv Sci Technol. 2020;55:101471.

    Article  CAS  Google Scholar 

  58. Motevalli SM, Eltahan AS, Liu L, Magrini A, Rosato N, Guo W, et al. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys Rep. 2019;5(1):19–30.

    Article  CAS  Google Scholar 

  59. Kumar S, Shukla A, Baul PP, Mitra A, Halder D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag Shelf Life. 2018;16:178–84.

    Article  Google Scholar 

  60. Castro GMMA, Passos TS, Nascimento SSC, Medeiros I, Araújo NK, Maciel BLL, et al. Gelatin nanoparticles enable water dispersibility and potentialize the antimicrobial activity of Buriti (Mauritia flexuosa) oil. BMC Biotechnol. 2020;20(1):55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song X, Gan K, Qin S, Chen L, Liu X, Chen T, et al. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Sci Rep. 2019;9(1):6365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang P, Li Y, Zhang C, Feng F, Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem. 2020;308:125599.

    Article  CAS  PubMed  Google Scholar 

  63. Haggag Y, Elshikh M, El-Tanani M, Bannat IM, McCarron P, Tambuwala MM. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv Transl Res. 2020;10(5):1353–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mousa DS, El-Far AH, Saddiq AA, Sudha T, Mousa SA. Nanoformulated bioactive compounds derived from different natural products combat pancreatic cancer cell proliferation. Int J Nanomedicine. 2020;15:2259–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahmed R, Tariq M, Ahmad IS, Fouly H, Fakhar IA, Hasan A, et al. Poly(lactic-co-glycolic acid) nanoparticles loaded with Callistemon citrinus phenolics exhibited anticancer properties against three breast cancer cell lines. J Food Qual. 2019;2019:2638481.

    Article  CAS  Google Scholar 

  66. Ali MA, Mosa KA. Encapsulation of metal and metal oxide nanoparticles by nutraceuticals: implications for biological activities. Curr Nutraceut. 2021;2(2):159–65.

    Article  Google Scholar 

  67. Duraipandy N, Lakra R, Vinjimur Srivatsan K, Ramamoorthy U, Korrapati PS, Kiran MS. Plumbagin caged silver nanoparticle stabilized collagen scaffold for wound dressing. J Mater Chem B. 2015;3(7):1415–25.

    Article  CAS  PubMed  Google Scholar 

  68. Rattanata N, Daduang S, Wongwattanakul M, Leelayuwat C, Limpaiboon T, Lekphrom R, et al. Gold nanoparticles enhance the anticancer activity of gallic acid against cholangiocarcinoma cell lines. Asian Pac J Cancer Prev. 2015;16(16):7143–7.

    Article  PubMed  Google Scholar 

  69. Sadeghi R, Kalbasi A, Emam-jomeh Z, Razavi SH, Kokini J, Moosavi-Movahedi AA. Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. J Nanopart Res. 2013;15(11):1931.

    Article  CAS  Google Scholar 

  70. Sahoo AK, Kanchi S, Mandal T, Dasgupta C, Maiti PK. Translocation of bioactive molecules through carbon nanotubes embedded in the lipid membrane. ACS Appl Mater Interfaces. 2018;10(7):6168–79.

    Article  CAS  PubMed  Google Scholar 

  71. Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for drug delivery. Adv Funct Mater. 2020;30(2):1902634.

    Article  CAS  Google Scholar 

  72. Elbialy NS, Aboushoushah SF, Sofi BF, Noorwali A. Multifunctional curcumin-loaded mesoporous silica nanoparticles for cancer chemoprevention and therapy. Microporous Mesoporous Mater. 2020;291:109540.

    Article  CAS  Google Scholar 

  73. Harini L, Karthikeyan B, Srivastava S, Suresh SB, Ross C, Gnanakumar G, et al. Polyethylenimine-modified curcumin-loaded mesoporus silica nanoparticle (MCM-41) induces cell death in MCF-7 cell line. IET Nanobiotechnol. 2017;11(1):57–61.

    Article  PubMed  Google Scholar 

  74. Chen C, Sun W, Wang X, Wang Y, Wang P. Rational design of curcumin loaded multifunctional mesoporous silica nanoparticles to enhance the cytotoxicity for targeted and controlled drug release. Mater Sci Eng C. 2018;85:88–96.

    Article  CAS  Google Scholar 

  75. Juère E, Florek J, Bouchoucha M, Jambhrunkar S, Wong KY, Popat A, et al. In vitro dissolution, cellular membrane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol Pharm. 2017;14(12):4431–41.

    Article  CAS  PubMed  Google Scholar 

  76. Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interf Sci. 2020;278:102125.

    Article  CAS  Google Scholar 

  77. Mehta P, Kadam S, Pawar A, Bothiraja C. Dendrimers for pulmonary delivery: current perspectives and future challenges. New J Chem. 2019;43(22):8396–409.

    Article  CAS  Google Scholar 

  78. Tripathi PK, Gupta S, Rai S, Shrivatava A, Tripathi S, Singh S, et al. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev Ind Pharm. 2020;46(3):412–26.

    Article  CAS  PubMed  Google Scholar 

  79. Gupta L, Sharma AK, Gothwal A, Khan MS, Khinchi MP, Qayum A, et al. Dendrimer encapsulated and conjugated delivery of berberine: a novel approach mitigating toxicity and improving in vivo pharmacokinetics. Int J Pharm. 2017;528(1):88–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahira M. Ezzat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ezzat, S.M., Salama, M., El Mahdi, N., Salem, M. (2022). Roles of Nanotechnology for Efficient Nutrient Delivery of Foods. In: Egbuna, C., Jeevanandam, J., C. Patrick-Iwuanyanwu, K., N. Onyeike, E. (eds) Application of Nanotechnology in Food Science, Processing and Packaging . Springer, Cham. https://doi.org/10.1007/978-3-030-98820-3_8

Download citation

Publish with us

Policies and ethics