Skip to main content

Gelling Agents, Micro and Nanogels in Food System Applications

  • Chapter
  • First Online:
Application of Nanotechnology in Food Science, Processing and Packaging

Abstract

Across the world many gelled items are manufactured and they are elastic in nature. The most frequent gelling components used in meals are polysaccharides and proteins. The method of gel formation is determined by the type of the gelling agents and the circumstances of gelation, such as temperature, ion presence, pH, and concentration of gelling agents. Food gels may exceed synthetic alternatives owing to their renewable supply, cheap, bio-compatibility, and bio-degradability. In food industry, the quality of food products, texture, taste, shelf life, delivery can be improved through the use of gelling agents, microgels and nanogels. Gelling agents can serve as a natural barrier between food and its environment, allowing moisture, gases, and volatiles to pass through while conferring protection and controlled release property. This chapter focuses on the functional characteristics of gelling agents, microgels and nanogels applications in food system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSC:

Differential scanning calorimeter

FTIR:

Fourier transform infrared spectroscopy

GA:

Gelling agent

NMR:

Nuclear magnetic resonance

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

XRD:

X-ray diffraction

References

  1. Aguilera JM, Baffico P. Structure–mechanical properties of heat induced whey protein/cassava starch gels. J Food Sci. 1997;62:1048–66.

    Article  CAS  Google Scholar 

  2. de Vries J. Hydrocolloid gelling agents and their applications. In: Gums and stabilisers for the food industry, vol. 12. London: RSC; 2004. p. 23–31.

    Google Scholar 

  3. Sutherland IW. Biotechnology of microbial polysaccharides in food. In: Food biotechnology. 2nd ed. Boca Raton, FL: CRC Press; 2007. p. 193–220.

    Google Scholar 

  4. Oakenfull D. Gelling agents. Crit Rev Food Sci Nutr. 1987;26:1–25.

    Article  CAS  PubMed  Google Scholar 

  5. Burey P, Bhandari BR, Howes T, Gidley MJ. Hydrocolloid gel particles: formation, characterization, and application. Crit Rev Food Sci Nutr. 2008;48(5):361–77.

    Article  CAS  PubMed  Google Scholar 

  6. Phillips G, Williams P, editors. Handbook of hydrocolloids. Amsterdam: Elsevier; 2009. p. 168–9.

    Google Scholar 

  7. Draget KI, Smidsrød O, Skjak-Braek G. Alginates from algae. In: Polysaccharides and polyamides in the food industry: properties, production, and patents. Weinheim: Wiley-VCH Verlag GMBH & Co. KGaA; 2005. p. 1–30.

    Google Scholar 

  8. Nishinari K, Zhang H. Recent advances in the understanding of heat set gelling polysaccharides. Trends Food Sci Technol. 2004;15:305–12.

    Article  CAS  Google Scholar 

  9. Banerjee S, Bhattacharya S. Food gels: gelling process and new applications. Crit Rev Food Sci Nutr. 2012;52(4):334–46.

    Article  CAS  PubMed  Google Scholar 

  10. Dutta J, Tripathi S, Dutta PK. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int. 2012;18(1):3–34.

    Article  CAS  PubMed  Google Scholar 

  11. Das N, Triparthi N, Basu S, Bose C, Maitra S, Khurana S. Progress in the development of gelling agents for improved culturability of microorganisms. Front Microbiol. 2015;6:698.

    PubMed  PubMed Central  Google Scholar 

  12. Becker A, Katzen F, Pühler A, Ielpi L. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol. 1998;50(2):145–52.

    Article  CAS  PubMed  Google Scholar 

  13. Nazir A, Asghar A, Maan A. Food gels: gelling process and new applications. Amsterdam: Elsevier; 2017. p. 335–53.

    Google Scholar 

  14. Clark AH, Schwartzberg HG, Hartel RW. Gels and gelling. In: Physical chemistry of food. New York, NY: Marcel Dekker; 1992. p. 263–83.

    Google Scholar 

  15. Totosaus A, Montejano JG, Salazar JA, Guerrero I. A review of physical and chemical protein‐gel induction. Int J Food Sci Technol. 2002;37(6):589–601.

    Article  CAS  Google Scholar 

  16. Lauber S, Krause I, Klostermeyer H, Henle T. Microbial transglutaminase crosslinks β-casein and β-lactoglobulin to heterologous oligomers under high pressure. Eur Food Res Technol. 2003;216(1):15–7.

    Article  CAS  Google Scholar 

  17. Ames JM. Applications of the Maillard reaction in the food industry. Food Chem. 1998;62(4):431–9.

    Article  CAS  Google Scholar 

  18. Lucey JA, Singh H. Formation and physical properties of acid milk gels: a review. Food Res Int. 1997;30:529–42.

    Article  CAS  Google Scholar 

  19. Park S, Okada T, Takeuchi D, Osakada K. Cyclopolymerization and copolymerization of functionalized 1,6‐heptadienes catalyzed by Pd complexes: mechanism and application to physical‐gel formation. Chem Eur J. 2010;16(29):8662–78.

    Article  CAS  PubMed  Google Scholar 

  20. Thakur VK, Thakur MK, Gupta RK. Graft copolymers of natural fibers for green composites. Carbohydr Polym. 2014;104:87–93.

    Article  CAS  PubMed  Google Scholar 

  21. Thakur VK, Thakur MK. Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng. 2014;2(12):2637–52.

    Article  CAS  Google Scholar 

  22. Ito K. Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J. 2007;39(6):489–99.

    Article  CAS  Google Scholar 

  23. Hurtado PI, Berthier L, Kob W. Heterogeneous diffusion in a reversible gel. Phys Rev Lett. 2007;98(13):135503.

    Article  CAS  PubMed  Google Scholar 

  24. Yadav S, Mehrotra GK, Bhartiya P, Singh A, Dutta PK. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr Polym. 2020;227:115348.

    Article  CAS  PubMed  Google Scholar 

  25. Roy S, Rhim JW. Preparation of antimicrobial and antioxidant gelatin/curcumin composite films for active food packaging application. Colloids Surf B: Biointerfaces. 2020;188:110761.

    Article  CAS  PubMed  Google Scholar 

  26. Roy S, Rhim JW. Preparation of gelatin/carrageenan-based color-indicator film integrated with shikonin and propolis for smart food packaging applications. Am Constit Soc Appl Bio Mater. 2020;4(1):770–9.

    Article  CAS  Google Scholar 

  27. Tang CH. Nanostructured soy proteins: fabrication and applications as delivery systems for bioactives (a review). Food Hydrocoll. 2019;91:92–116.

    Article  CAS  Google Scholar 

  28. Wróblewska B, Juśkiewicz J, Kroplewski B, Jurgoński A, Wasilewska E, Złotkowska D, et al. The effects of whey and soy proteins on growth performance, gastrointestinal digestion, and selected physiological responses in rats. Food Funct. 2018;9(3):1500–9.

    Article  PubMed  Google Scholar 

  29. Montowska M, Fornal E. Detection of peptide markers of soy, milk and egg white allergenic proteins in poultry products by Qualitative tandem liquid chromatography quadrupole time of flight mass spectrometry Qualitative tandem liquid chromatography quadrupole time of flight mass spectrometry (LC-Q-TOF-MS/MS). Lebensm-Wiss Technol. 2018;87:310–7.

    Article  CAS  Google Scholar 

  30. Henchion M, Moloney AP, Hyland J, Zimmermann J, McCarthy S. Trends for meat, milk and egg consumption for the next decades and the role played by livestock systems in the global production of proteins. Animal. 2021;15:100287.

    Article  CAS  PubMed  Google Scholar 

  31. Said MI. Role and function of gelatin in the development of the food and non-food industry: a review. Inst Phys Conf Ser Earth Environ Sci. 2020;492(1):12086.

    Article  Google Scholar 

  32. Kyselová J, Ječmínková K, Matějíčková J, Hanuš O, Kott T, Štípková M, et al. Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of β-casein, κ-casein, and β-lactoglobulin. Asian Aust J Anim Sci. 2019;32(1):14.

    Article  CAS  Google Scholar 

  33. Ippoushi K, Tanaka Y, Wakagi M, Hashimoto N. Evaluation of protein extraction methods for β-conglycinin quantification in soybeans and soybean products. LWT - Food Sci Technol. 2020;132:109871.

    Article  CAS  Google Scholar 

  34. Sun C, Liu J, Yang N, Xu G. Egg quality and egg albumen property of domestic chicken, duck, goose, turkey, quail, and pigeon. Poult Sci. 2019;98(10):4516–21.

    Article  CAS  PubMed  Google Scholar 

  35. Bean SR, Akin PA, Aramouni FM. Zein functionality in viscoelastic dough for baked food products. J Cereal Sci. 2021;84:103270.

    Article  CAS  Google Scholar 

  36. Cao L, Lu W, Mata A, Nishinari K, Fang Y. Egg-box model-based gelation of alginate and pectin: a review. Carbohydr Polym. 2020;242:116389.

    Article  CAS  PubMed  Google Scholar 

  37. Madni A, Khalid A, Wahid F, Ayub H, Khan R, Kousar R. Preparation and applications of guar gum composites in biomedical, pharmaceutical, food, and cosmetics industries. Curr Nanosci. 2021;17(3):365–79.

    Article  CAS  Google Scholar 

  38. De Avelar MHM, Efraim P. Alginate/pectin cold-set gelation as a potential sustainable method for jelly candy production. LWT - Food Sci Technol. 2020;123:109119.

    Article  CAS  Google Scholar 

  39. Mahuwala AA, Hemant V, Meharwade SD, Deb A, Chakravorty A, Grace AN, et al. Synthesis and characterisation of starch/agar nanocomposite films for food packaging application. IET Nanobiotechnol. 2020;14(9):809–14.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Imeson A. Food stabilisers, thickeners and gelling agents. New York, NY: John Wiley & Sons; 2011.

    Google Scholar 

  41. Sudhamani SR, Prasad MS, Sankar KU. DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocoll. 2003;17(3):245–50.

    Article  CAS  Google Scholar 

  42. Luykx DM, Peters RJ, van Ruth SM, Bouwmeester H. A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem. 2008;56(18):8231–47.

    Article  CAS  PubMed  Google Scholar 

  43. Moritaka H, Kimura S, Fukuba H. Rheological properties of matrix-particle gellan gum gel: effects of calcium chloride on the matrix. Food Hydrocoll. 2003;17(5):653–60.

    Article  CAS  Google Scholar 

  44. Aguilera JM, Stanley DW. Microstructural principles of food processing and engineering. New York, NY: Springer Science & Business Media; 1999.

    Google Scholar 

  45. Jena R, Bhattacharya S. Viscoelastic characterization of rice gel. J Texture Stud. 2003;34(4):349–60.

    Article  Google Scholar 

  46. Vittadini E, Carini E, Barbanti D. The effect of high pressure and temperature on the macroscopic, microscopic, structural and molecular properties of tapioca starch gels. In: Water properties of food, pharamaceutical and biological materials. London: Routledge; 2006. p. 471–83.

    Google Scholar 

  47. Van Vliet T. Mechanical properties of concentrated food gels. In: Dickinson E, Lorient D, editors. Proc. Int. Symp. Food macromolecules and colloids, Dijon; 1994. p. 447–55.

    Google Scholar 

  48. Kiss É. Nanotechnology in food systems: a review. Acta Aliment. 2020;49(4):460–74.

    Article  CAS  Google Scholar 

  49. Eom S, Chun Y, Park C, Kim B, Lee S, Park D. Application of freeze–thaw enzyme impregnation to produce softened root vegetable foods for elderly consumers. J Texture Stud. 2018;49(4):404–14.

    Article  Google Scholar 

  50. Nowacka M, Wiktor A, Dadan M, Rybak K, Anuszewska A, Materek L, et al. The application of combined pre-treatment with utilization of sonication and reduced pressure to accelerate the osmotic dehydration process and modify the selected properties of cranberries. Foods. 2019;8(8):283.

    Article  CAS  PubMed Central  Google Scholar 

  51. Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT. 3D printed microfluidics. Annu Rev Anal Chem. 2020;13:45–65.

    Article  Google Scholar 

  52. Jiang Y, Liu L, Wang B, Yang X, Chen Z, Zhong Y, et al. Polysaccharide-based edible emulsion gel stabilized by regenerated cellulose. Food Hydrocoll. 2019;91:232–7.

    Article  CAS  Google Scholar 

  53. Barroso L, Viegas C, Vieira J, Pego C, Costa J, Fonte P. Lipid-based carriers for food ingredients delivery. J Food Eng. 2020;295:110451.

    Article  CAS  Google Scholar 

  54. Funke W, Okay O, Joos-Müller B. Microgels-intramolecularly crosslinked macromolecules with a globular structure. Adv Polym Sci. 1998;136:139–234.

    Article  Google Scholar 

  55. IUPAC. Compendium of chemical terminology (the “Gold Book”). Oxford: Scientific Publications; 1997.

    Google Scholar 

  56. Yallapu MM, Jaggi M, Chauhan SC. Design and engineering of nanogels for cancer treatment. Drug Discov Today. 2011;16:457–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li D, Nostrum C, Mastrobattista E, Vermonden T, Hernnink W. Nanogels for intracelular delivery of biotherapeutics. J Control Release. 2017;259:16–28.

    Article  CAS  PubMed  Google Scholar 

  58. Sutekin S, Guven O. Application of radiation for the synthesis of poly(n-vinyl pyrrolidone) nanogels with controlled sizes from aqueous solutions. Appl Radiat Isot. 2019;145:161–9.

    Article  CAS  Google Scholar 

  59. McClements DJ. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocoll. 2017;68:238.

    Article  CAS  Google Scholar 

  60. McClements DJ. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: physicochemical aspects. Adv Colloid Interf Sci. 2017;240:31–59. https://doi.org/10.1016/j.cis.2016.12.005.

    Article  CAS  Google Scholar 

  61. Stokes JR. Food biopolymer gels, microgel and nanogel structures, formation and rheology. In: Food materials science and engineering. New York, NY: Wiley; 2012. p. 151–76. https://doi.org/10.1002/9781118373903.ch6.

    Chapter  Google Scholar 

  62. Zhang H, Zhai Y, Wang J, Zhai G. New progress and prospects: the application of nanogel in drug delivery. Mater Sci Eng. 2016;60:560–8.

    Article  CAS  Google Scholar 

  63. Neamtu I, Rusu A, Diaconu A, Nita L, Chiriac A. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017;24:539–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hu G, Batool Z, Cai Z, Liu Y, Ma M, Sheng L, Jin Y. Production of self-assembling acylated ovalbumin nanogels as stable delivery vehicles for curcumin. Food Chem. 2021;355:129635. https://doi.org/10.1016/j.foodchem.2021.129635. PMID: 33780798

    Article  CAS  PubMed  Google Scholar 

  65. Khan J, Rudrapal M, Bhat EA, Ali A, Alaidarous M, Alshehri B, Banwas S, Ismail R, Egbuna C. Perspective insights to bio-nanomaterials for the treatment of neurological disorders. Front Bioeng Biotechnol. 2021;9:724158. https://doi.org/10.3389/fbioe.2021.724158.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11(4):338–78. https://doi.org/10.2174/1570159X11311040002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munir, N. et al. (2022). Gelling Agents, Micro and Nanogels in Food System Applications. In: Egbuna, C., Jeevanandam, J., C. Patrick-Iwuanyanwu, K., N. Onyeike, E. (eds) Application of Nanotechnology in Food Science, Processing and Packaging . Springer, Cham. https://doi.org/10.1007/978-3-030-98820-3_10

Download citation

Publish with us

Policies and ethics