Skip to main content

Machine Learning and Deep Learning for Hardware Fingerprinting

  • Chapter
  • First Online:
Security and Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13049))

  • 1618 Accesses

Abstract

Device or machine fingerprinting is the process of collecting information on a (part of a) device for its identification. This can be done under different scenarios and using information from different hardware and software layers of the device. Hardware fingerprinting typically refers to device fingerprinting using information collected from the hardware layer. Hardware fingerprinting can have nefarious usages related to privacy abuse, as well as many positive ones such as soft authentication, indoor positioning systems, and others. Here we introduce some of the uses of hardware fingerprinting, with special emphasis on those related to commonly available devices, and explain how machine learning and deep learning have enabled and/or improved them. Additionally, we discuss some of their limitations and possibilities for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The MadWiFi driver, present in many Atheros chipsets.

  2. 2.

    Periodic CAN messages can typically constitute around \(90\%\) of CAN bus messages, although this varies by vehicle platform and operating conditions.

  3. 3.

    The CAN bus arbitrates priority based on the ID of the messages colliding. Using extended identifiers when there is no need, it is possible to fix 18 bits of the ID for all ECUs.

  4. 4.

    Note that ML and DL algorithms aim for this, but typically can only test the behaviour in a particular test dataset.

References

  1. Abdolmaleki, B., Baghery, K., Akhbari, B., Aref, M.R.: Cryptanalysis of two EPC-based RFID security schemes. In: International ISC Conference on Information Security and Cryptology - ISCISC2015, pp. 1–6. IEEE, September 2015

    Google Scholar 

  2. Abdolmaleki, B., Baghery, K., Akhbari, B., Reza Aref, M.: Attacks and improvements on two new-found RFID authentication protocols. In: International Symposium on Telecommunications - IST 2014, pp. 1–6, July 2014

    Google Scholar 

  3. Aghili, S.F., Bagheri, N., Gauravaram, P., Safkhani, M., Sanadhya, S.K.: On the security of two RFID mutual authentication protocols. In: Hutter, M., Schmidt, J.-M. (eds.) RFIDSec 2013. LNCS, vol. 8262, pp. 86–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41332-2_6

    Chapter  Google Scholar 

  4. Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Desynchronization attack on RAPP ultralightweight authentication protocol. Cryptology ePrint Archive, Report 2012/490 (2012)

    Google Scholar 

  5. Ahmadian, Z., Salmasizadeh, M., Aref, M.R.: Recursive linear and differential cryptanalysis of ultralightweight authentication protocols. Cryptology ePrint Archive, Report 2012/489 (2012)

    Google Scholar 

  6. Ain, Q.U., Mahmood, Y., Mujahid, U., Najam-ul islam, M.: Cryptanalysis of mutual ultralightweight authentication protocols: SASI and RAPP. In: International Conference on Open Source Systems and Technologies - ICOSST 2014, Lahore, Pakistan, pp. 136–145, December 2014

    Google Scholar 

  7. Akgün, M., Bayrak, A.O., Çaǧlayan, M.U.: Attacks and improvements to chaotic map-based RFID authentication protocol. Secur. Commun. Netw. 8, 4028–4040 (2015)

    Article  Google Scholar 

  8. Akgun, M., Caglayan, M.U.: Weaknesses of two RFID protocols regarding de-synchronization attacks. In: International Wireless Communications and Mobile Computing Conference IWCMC - 2015, Dubrovnik, Croatia, August 2015

    Google Scholar 

  9. Akgün, M., Çaǧlayan, M.U.: On the security of recently proposed RFID protocols. Cryptology ePrint Archive, Report 2013/820 (2013)

    Google Scholar 

  10. Akgün, M., Çaǧlayan, M.U.: Providing destructive privacy and scalability in RFID systems using PUFs. Ad Hoc Networks, February 2015

    Google Scholar 

  11. Alavi, S.M., Abdolmaleki, B., Baghery, K.: Vulnerabilities and improvements on HRAP\(^+\), a hash-based RFID authentication protocol. Adv. Comput. Sci. Int. J. 3(6), 51–56 (2014)

    Google Scholar 

  12. Alavi, S.M., Baghery, K., Abdolmaleki, B.: Security and privacy flaws in a recent authentication protocol for EPC C1 G2 RFID tags. Adv. Comput. Sci. Int. J. 3(5), 44–52 (2014)

    Google Scholar 

  13. Arackaparambil, C., Bratus, S., Shubina, A., Kotz, D.: On the reliability of wireless fingerprinting using clock skews, pp. 169–174, January 2010. https://doi.org/10.1145/1741866.1741894

  14. Avatefipour, O.: Physical-fingerprinting of electronic control unit (ECU) based on machine learning algorithm for in-vehicle network communication protocol “can-bus” (2017)

    Google Scholar 

  15. Avoine, G., Beaujeant, A., Hernandez-Castro, J., Demay, L., Teuwen, P.: A survey of security and privacy issues in ePassport protocols. ACM Comput. Surv. 48, 1–37 (2016). https://doi.org/10.1145/2825026

    Article  Google Scholar 

  16. Baldini, G., Giuliani, R., Cano, E.: An analysis of the privacy threat in vehicular ad hoc networks due to radio frequency fingerprinting. Mob. Inf. Syst. 2017, 1–13 (2017). https://doi.org/10.1155/2017/3041749

    Article  Google Scholar 

  17. Bauer, K., Mccoy, D., Anderson, E., Breitenbach, M., Grunwald, G.G.D.: The directional attack on wireless localization: how to spoof your location with a tin can. In: Proceedings of IEEE Conference on Global Telecommunications, pp. 4125–4130 (2009)

    Google Scholar 

  18. Bayar, B., Stamm, M.: A deep learning approach to universal image manipulation detection using a new convolutional layer, pp. 5–10, June 2016. https://doi.org/10.1145/2909827.2930786

  19. Beale, J., Meer, H., van der Walt, C., Deraison, R.: Nessus Network Auditing: Jay Beale Open Source Security Series. Elsevier (2004)

    Google Scholar 

  20. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  21. Bennabhaktula, G., Alegre, E., Karastoyanova, D., Azzopardi, G.: Device-based image matching with similarity learning by convolutional neural networks that exploit the underlying camera sensor pattern noise, April 2020

    Google Scholar 

  22. Bertoncini, C., Rudd, K., Nousain, B., Hinders, M.: Wavelet fingerprinting of radio-frequency identification (RFID) tags. IEEE Trans. Ind. Electron. 59(12), 4843–4850 (2011)

    Article  Google Scholar 

  23. Biham, E., Bitan, S., Gavril, E.: TCAN: authentication without cryptography on a can bus based on nodes location on the bus. In: Embedded Security in Cars - ESCAR Europe 2018 Conference. ESCAR (2018)

    Google Scholar 

  24. Bojinov, H., Michalevsky, Y., Nakibly, G., Boneh, D.: Mobile device identification via sensor fingerprinting. arXiv abs/1408.1416 (2014)

    Google Scholar 

  25. Bolliger, P.: Redpin-adaptive, zero-configuration indoor localization through user collaboration. In: Proceedings of the First ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments, pp. 55–60 (2008)

    Google Scholar 

  26. Bratus, S., Cornelius, C., Kotz, D., Peebles, D.: Active behavioral fingerprinting of wireless devices. In: Proceedings of the ACM Conference on Wireless Network Security (WiSec), pp. 56–61. ACM, March 2008. https://doi.org/10.1145/1352533.1352543. https://www.cs.dartmouth.edu/~kotz/research/bratus-fingerprint/index.html

  27. Brunato, M., Battiti, R.: Statistical learning theory for location fingerprinting in wireless LANs. Comput. Netw. 47(6), 825–845 (2005)

    Article  Google Scholar 

  28. Butti, L.: Raw wireless tools homepage (2006). http://rfakeap.tuxfamily.org/

  29. Butti, L., Tinnés, J.: Discovering and exploiting 802.11 wireless driver vulnerabilities. J. Comput. Virol. 4, 25–37 (2008). https://doi.org/10.1007/s11416-007-0065-x

  30. Cao, Y., Li, S., Wijmans, E.: (Cross-)browser fingerprinting via OS and hardware level features, January 2017. https://doi.org/10.14722/ndss.2017.23152

  31. Carlotto, A., Parodi, M., Bonamico, C., Lavagetto, F., Valla, M.: Proximity classification for mobile devices using Wi-Fi environment similarity. In: Proceedings of the First ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments, pp. 43–48 (2008)

    Google Scholar 

  32. Chang, N., Rashidzadeh, R., Ahmadi, M.: Robust indoor positioning using differential Wi-Fi access points. IEEE Trans. Consum. Electron. 56(3), 1860–1867 (2010)

    Article  Google Scholar 

  33. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack surfaces. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011, p. 6. USENIX Association (2011)

    Google Scholar 

  34. Chen, D., et al.: S2M: a lightweight acoustic fingerprints-based wireless device authentication protocol. IEEE Internet Things J. 4(1), 88–100 (2017)

    Article  Google Scholar 

  35. Chen, Y., Kleisouris, K., Li, X., Trappe, W., Martin, R.: A security and robustness performance analysis of localization algorithms to signal strength attacks. TOSN 5, 1–37 (2009). https://doi.org/10.1145/1464420.1464422

    Article  Google Scholar 

  36. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion detection. In: Proceedings of the 25th USENIX Conference on Security Symposium, SEC 2016, pp. 911–927. USENIX Association (2016)

    Google Scholar 

  37. Choi, K., Lam, E., Wong, K.: Automatic source camera identification using the intrinsic lens radial distortion. Opt. Express 14, 11551–11565 (2006). https://doi.org/10.1364/OE.14.011551

    Article  Google Scholar 

  38. Choi, K., Lam, E., Wong, K.: Source camera identification using footprints from lens aberration. In: Proceedings of the SPIE, vol. 6069, February 2006. https://doi.org/10.1117/12.649775

  39. Choi, W., Jo, H., Woo, S., Chun, J., Park, J.: Identifying ECUs using inimitable characteristics of signals in controller area networks. IEEE Trans. Veh. Technol. 67, 4757–4770 (2016). https://doi.org/10.1109/TVT.2018.2810232

    Article  Google Scholar 

  40. Cinefra, N.: An adaptive indoor positioning system based on Bluetooth low energy RSSI (2013)

    Google Scholar 

  41. Cozzolino, D., Verdoliva, L.: Noiseprint: a CNN-based camera model fingerprint. IEEE Trans. Inf. Forensics Secur. 15, 144–159 (2019). https://doi.org/10.1109/TIFS.2019.2916364

    Article  Google Scholar 

  42. Danev, B., Heydt-Benjamin, T.S., Čapkun, S.: Physical-layer identification of RFID devices. In: Proceedings of the 18th Conference on USENIX Security Symposium, SSYM 2009, pp. 199–214. USENIX Association (2009)

    Google Scholar 

  43. Das, A., Borisov, N., Caesar, M.: Do you hear what I hear? Fingerprinting smart devices through embedded acoustic components. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS 2014, pp. 441–452. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2660267.2660325

  44. Delvaux, J.: Machine-learning attacks on PolyPUFs, OB-PUFs, RPUFs, LHS-PUFs, and PUF–FSMs. IEEE Trans. Inf. Forensics Secur. 14, 2043–2058 (2019). https://doi.org/10.1109/TIFS.2019.2891223

    Article  Google Scholar 

  45. Devernay, F., Faugeras, O.: Automatic calibration and removal of distortion from scenes of structured environments. In: Proceedings of the SPIE, vol. 2567, July 1995. https://doi.org/10.1117/12.218487

  46. Dey, S., Roy, N., Xu, W., Choudhury, R., Nelakuditi, S.: AccelPrint: imperfections of accelerometers make smartphones trackable, January 2014. https://doi.org/10.14722/ndss.2014.23059

  47. Ellch, J.P.: Fingerprinting 802.11 devices (2006). https://calhoun.nps.edu/handle/10945/2592

  48. Englehardt, S., Narayanan, A.: Online tracking: a 1-million-site measurement and analysis, pp. 1388–1401, October 2016. https://doi.org/10.1145/2976749.2978313

  49. Ferrara, P., Beslay, L.: Multimodal fingerprinting of imaging devices -inception report project AVICAO - authors and victims identification of child abuse on-line, December 2016. https://doi.org/10.2760/751517

  50. Foruhandeh, M., Mohammed, A.Z., Kildow, G., Berges, P., Gerdes, R.: Spotr: GPS spoofing detection via device fingerprinting (2020)

    Google Scholar 

  51. Franklin, J., McCoy, D., Tabriz, P., Neagoe, V., Van Randwyk, J., Sicker, D.: Passive data link layer 802.11 wireless device driver fingerprinting. In: Proceedings of the 15th Conference on USENIX Security Symposium, USENIX-SS 2006, vol. 2015. USENIX Association (2006)

    Google Scholar 

  52. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv:1412.6572 (2014)

  53. Gopalakrishnan, S., Cekic, M., Madhow, U.: Robust wireless fingerprinting via complex-valued neural networks (2019)

    Google Scholar 

  54. Groza, B., Murvay, S., van Herrewege, A., Verbauwhede, I.: LiBrA-CAN: a lightweight broadcast authentication protocol for controller area networks. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 185–200. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5_15

    Chapter  Google Scholar 

  55. Hall, J., Barbeau, M., Kranakis, E.: Detecting rogue devices in Bluetooth networks using radio frequency fingerprinting, pp. 108–113, January 2006

    Google Scholar 

  56. Hartkopp, O., Schilling, R.M.: Message authenticated CAN. In: Escar Conference, Berlin, Germany (2012)

    Google Scholar 

  57. Hasse, J., Gloe, T., Beck, M.: Forensic identification of GSM mobile phones. In: Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security, pp. 131–140 (2013)

    Google Scholar 

  58. Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Peris-Lopez, P., Quisquater, J.J.: Cryptanalysis of the SASI ultralightweight RFID authentication protocol with modular rotations. In: International Workshop on Coding and Cryptography - WCC 2009, Ullensvang, Norway, May 2009

    Google Scholar 

  59. Hernandez-Castro, J.C., Peris-Lopez, P., Phan, R.C.-W., Tapiador, J.M.E.: Cryptanalysis of the David-Prasad RFID ultralightweight authentication protocol. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 22–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16822-2_3

    Chapter  Google Scholar 

  60. Hernandez-Castro, J.C., Tapiador, J.E., Peris-Lopez, P., Clark, J.A., Talbi, E.G.: Metaheuristic traceability attack against SLMAP, an RFID lightweight authentication protocol. In: Proceedings of the 23rd IEEE International Parallel and Distributed Processing Symposium - IPDPS 2009, Rome, Italy. IEEE Computer Society, May 2009

    Google Scholar 

  61. Hernandez-Castro, J.C., Peris-Lopez, P., Aumasson, J.-P.: On the key schedule strength of PRESENT. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., de Capitani di Vimercati, S. (eds.) DPM/SETOP -2011. LNCS, vol. 7122, pp. 253–263. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28879-1_17

    Chapter  Google Scholar 

  62. Hospodar, G., Maes, R., Verbauwhede, I.: Machine learning attacks on 65nm arbiter PUFs: accurate modeling poses strict bounds on usability. In: 2012 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 37–42 (2012)

    Google Scholar 

  63. Huo, Y., Zhu, X.: High dynamic range image forensics using CNN (2019)

    Google Scholar 

  64. Hupperich, T., Hosseini, H., Holz, T.: Leveraging sensor fingerprinting for mobile device authentication. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721, pp. 377–396. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40667-1_19

    Chapter  Google Scholar 

  65. Jana, S., Kasera, S.: On fast and accurate detection of unauthorized wireless access points using clock skews, vol. 9, pp. 104–115, January 2008. https://doi.org/10.1109/TMC.2009.145

  66. Jenkins, I.R., Shapiro, R., Bratus, S., Speers, R., Goodspeed, T.: Fingerprinting IEEE 802.15.4 devices with commodity radios. Technical report. TR2014-746, Dartmouth College, Computer Science, Hanover, NH, March 2014. http://www.cs.dartmouth.edu/reports/TR2014-746-rev2.pdf

  67. Kaemarungsi, K., Krishnamurthy, P.: Modeling of indoor positioning systems based on location fingerprinting. In: IEEE Infocom 2004, vol. 2, pp. 1012–1022. IEEE (2004)

    Google Scholar 

  68. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classification in the dark, vol. 35, pp. 229–240, January 2005

    Google Scholar 

  69. Khalafalla, M., Gebotys, C.: PUFs deep attacks: enhanced modeling attacks using deep learning techniques to break the security of double arbiter PUFs. In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 204–209 (2019)

    Google Scholar 

  70. Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 1, pp. 709–712 (2004)

    Google Scholar 

  71. Kimoto, R., Ishida, S., Yamamoto, T., Tagashira, S., Fukuda, A.: MuCHLoc: indoor zigbee localization system utilizing inter-channel characteristics \(\dagger \). Sensors (Basel, Switzerland) 19, 1645 (2019)

    Article  Google Scholar 

  72. Kobusinska, A., Brzezinski, J., Pawulczuk, K.: Device fingerprinting: analysis of chosen fingerprinting methods. In: IoTBDS (2017)

    Google Scholar 

  73. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. In: 2005 IEEE Symposium on Security and Privacy (S&P 2005), pp. 211–225 (2005)

    Google Scholar 

  74. Koike-Akino, T., Wang, P., Pajovic, M., Sun, H., Orlik, P.V.: Fingerprinting-based indoor localization with commercial MMWave WiFi: a deep learning approach. IEEE Access 8, 84879–84892 (2020)

    Article  Google Scholar 

  75. Koscher, K., et al.: Experimental security analysis of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy, pp. 447–462. IEEE (2010)

    Google Scholar 

  76. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR datasets (2000). https://www.cs.toronto.edu/~kriz/cifar.html

  77. Kurachi, R., Matsubara, Y., Takada, H., Adachi, N., Miyashita, Y., Horihata, S.: CaCAN-centralized authentication system in can (controller area network). In: 14th International Conference on Embedded Security in Cars (ESCAR 2014) (2014)

    Google Scholar 

  78. Kurosawa, K., Kuroki, K., Saitoh, N.: CCD fingerprint method-identification of a video camera from videotaped images. In: Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348), vol. 3, pp. 537–540 (1999)

    Google Scholar 

  79. Kushki, A., Plataniotis, K.N., Venetsanopoulos, A.N.: Sensor selection for mitigation of RSS-based attacks in wireless local area network positioning. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2065–2068 (2008)

    Google Scholar 

  80. Li, X., Chen, Y., Yang, J., Zheng, X.: Designing localization algorithms robust to signal strength attacks, pp. 341–345, April 2011. https://doi.org/10.1109/INFCOM.2011.5935178

  81. Li, Z., Trappe, W., Zhang, Y., Nath, B.: Robust statistical methods for securing wireless localization in sensor networks. In: Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005, pp. 91–98 (2005)

    Google Scholar 

  82. Lin, C.W., Sangiovanni-Vincentelli, A.: Cyber-security for the controller area network (CAN) communication protocol. In: 2012 International Conference on Cyber Security, pp. 1–7. IEEE (2012)

    Google Scholar 

  83. Lin, H., Zhang, Y., Griss, M., Landa, I.: WASP: an enhanced indoor locationing algorithm for a congested Wi-Fi environment. In: Fuller, R., Koutsoukos, X.D. (eds.) MELT 2009. LNCS, vol. 5801, pp. 183–196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04385-7_13

    Chapter  Google Scholar 

  84. Mayer, O., Stamm, M.C.: Forensic similarity for digital images. IEEE Trans. Inf. Forensics Secur. 15, 1331–1346 (2020)

    Article  Google Scholar 

  85. Merchant, K., Revay, S., Stantchev, G., Nousain, B.: Deep learning for RF device fingerprinting in cognitive communication networks. IEEE J. Sel. Top. Signal Process. 12(1), 160–167 (2018)

    Article  Google Scholar 

  86. Michalevsky, Y., Boneh, D., Nakibly, G.: Gyrophone: recognizing speech from gyroscope signals. In: 23rd USENIX Security Symposium (USENIX Security 2014), San Diego, CA, pp. 1053–1067. USENIX Association, August 2014. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/michalevsky

  87. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015, 91 (2015)

    Google Scholar 

  88. Nakibly, G., Shelef, G., Yudilevich, S.: Hardware fingerprinting using HTML5, March 2015

    Google Scholar 

  89. Nowdehi, N., Lautenbach, A., Olovsson, T.: In-vehicle can message authentication: an evaluation based on industrial criteria. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–7 (2017)

    Google Scholar 

  90. Nürnberger, S., Rossow, C.: – vatiCAN – vetted, authenticated CAN Bus. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 106–124. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_6

    Chapter  Google Scholar 

  91. Olejnik, L., Acar, G., Castelluccia, C., Díaz, C.: The leaking battery - a privacy analysis of the HTML5 battery status API. IACR Cryptology ePrint Archive 2015, 616 (2015)

    Google Scholar 

  92. Organero, M., Brito-Pacheco, C.: Improving accuracy and simplifying training in fingerprinting-based indoor location algorithms at room level. Mob. Inf. Syst. 2016 (2016). https://doi.org/10.1155/2016/2682869

  93. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Li, T., Li, Y.: Vulnerability analysis of RFID protocols for tag ownership transfer. Comput. Netw. 54(9), 1502–1508 (2010)

    Article  Google Scholar 

  94. Peris-Lopez, P., Hernandez-Castro, J.C., Tapiador, J.M.E., Li, T., van der Lubbe, J.C.A.: Weaknesses in two recent lightweight RFID authentication protocols. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 383–392. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16342-5_28

    Chapter  Google Scholar 

  95. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., van der Lubbe, J.C.A.: Security flaws in a recent ultralightweight RFID protocol. In: Workshop on RFID Security - RFIDSec Asia 2010. Cryptology and Information Security, Singapore, Republic of Singapore, vol. 4, pp. 83–93. IOS Press, February 2010

    Google Scholar 

  96. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Palomar, E., van der Lubbe, J.C.A.: Cryptographic puzzles and distance-bounding protocols: practical tools for RFID security. In: IEEE International Conference on RFID - IEEE RFID 2010, Orlando, Florida, USA, pp. 45–52. IEEE Computer Society, April 2010

    Google Scholar 

  97. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.: RFID systems: a survey on security threats and proposed solutions. In: Cuenca, P., Orozco-Barbosa, L. (eds.) PWC 2006. LNCS, vol. 4217, pp. 159–170. Springer, Heidelberg (2006). https://doi.org/10.1007/11872153_14

    Chapter  Google Scholar 

  98. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.: Cryptanalysis of a novel authentication protocol conforming to EPC-C1G2 standard. In: Workshop on RFID Security - RFIDSec 2007, Malaga, Spain, July 2007

    Google Scholar 

  99. Peris-Lopez, P., Hernandez-Castro, J.C., Phan, R.C.-W., Tapiador, J.M.E., Li, T.: Quasi-linear cryptanalysis of a secure RFID ultralightweight authentication protocol. In: Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 427–442. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6_30

    Chapter  Google Scholar 

  100. Peris-Lopez, P., Hernandez-Castro, J.C., Tapiador, J.M., van der Lubbe, J.C.: Cryptanalysis of an EPC class-1 generation-2 standard compliant authentication protocol. Eng. Appl. Artif. Intell. 24(6), 1061–1069 (2011)

    Article  Google Scholar 

  101. Petit, J., Schaub, F., Feiri, M., Kargl, F.: Pseudonym schemes in vehicular networks: a survey. IEEE Commun. Surv. Tutor. 17(1), 228–255 (2014)

    Article  Google Scholar 

  102. Quiring, E., Kirchner, M., Rieck, K.: On the security and applicability of fragile camera fingerprints, July 2019

    Google Scholar 

  103. Rao, X., Li, Z., Yang, Y.: Device-free passive wireless localization system with transfer deep learning method. J. Ambient. Intell. Hum. Comput. 11(10), 4055–4071 (2020). https://doi.org/10.1007/s12652-019-01662-y

    Article  Google Scholar 

  104. Rivest, R.L.: Learning decision lists. Mach. Learn. 2(3), 229–246 (1987)

    Google Scholar 

  105. Rührmair, U., Sölter, J.: PUF modeling attacks: an introduction and overview. In: 2014 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1–6 (2014)

    Google Scholar 

  106. Safkhani, M., Bagheri, N., Peris-Lopez, N., Mitrokotsa, A., Hernandez-Castro, J.C.: Weaknesses in another Gen2-based RFID authentication protocol. In: IEEE International Conference on RFID-Technology and Applications - IEEE RFID TA 2012, Nice, France. IEEE Press, IEEE, November 2012

    Google Scholar 

  107. Safkhani, M., Peris-Lopez, P., Badheri, N., Naderi, M., Hernandez-Castro, J.C.: On the security of Tan et al. serverless RFID authentication and search protocols. In: Workshop on RFID Security - RFIDSec 2012, Nijmegen, Netherlands, June 2012

    Google Scholar 

  108. Safkhani, M., Peris-Lopez, P., Hernandez-Castro, J.C., Bagheri, N.: Cryptanalysis of the Cho et al. protocol: a hash-based RFID tag mutual authentication protocol. J. Comput. Appl. Math. 259, 571–577 (2013)

    Article  MathSciNet  Google Scholar 

  109. Safkhani, M., Peris-Lopez, P., Hernandez-Castro, J.C., Bagheri, N., Naderi, M.: Cryptanalysis of Cho et al’.s protocol, a hash-based mutual authentication protocol for RFID systems. Cryptology ePrint Archive, Report 2011/311 (2011)

    Google Scholar 

  110. Sagong, S., Ying, X., Clark, A., Bushnell, L., Poovendran, R.: Cloaking the clock: emulating clock skew in controller area networks, pp. 32–42, April 2018. https://doi.org/10.1109/ICCPS.2018.00012

  111. Sankhe, K., Belgiovine, M., Zhou, F., Riyaz, S., Ioannidis, S., Chowdhury, K.: Oracle: optimized radio classification through convolutional neural networks. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 370–378 (2019)

    Google Scholar 

  112. Santikellur, P., Bhattacharyay, A., Chakraborty, R.S.: Deep learning based model building attacks on arbiter PUF compositions. IACR Cryptology ePrint Archive 2019, 566 (2019)

    Google Scholar 

  113. Schweppe, H., Roudier, Y., Weyl, B., Apvrille, L., Scheuermann, D.: Car2x communication: securing the last meter-a cost-effective approach for ensuring trust in car2x applications using in-vehicle symmetric cryptography. In: 2011 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5. IEEE (2011)

    Google Scholar 

  114. Shaik, A., Borgaonkar, R., Park, S., Seifert, J.P.: New vulnerabilities in 4G and 5G cellular access network protocols: exposing device capabilities. In: Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, WiSec 2019, pp. 221–231. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3317549.3319728

  115. Shields, C., Levine, B.N.: A protocol for anonymous communication over the internet. In: Proceedings of the 7th ACM Conference on Computer and Communications Security, pp. 33–42 (2000)

    Google Scholar 

  116. Smith, L., et al.: Classifying WiFi “physical fingerprints” using complex deep learning. In: Hammoud, R.I., Overman, T.L., Mahalanobis, A. (eds.) Automatic Target Recognition XXX, vol. 11394, pp. 82–96. International Society for Optics and Photonics, SPIE (2020). https://doi.org/10.1117/12.2557933

  117. Smith, S.: Cryptographic scalability challenges in the smart grid, pp. 1–3, January 2012. https://doi.org/10.1109/ISGT.2012.6175564

  118. Subbu, K.P., Zhang, C., Luo, J., Vasilakos, A.V.: Analysis and status quo of smartphone-based indoor localization systems. IEEE Wirel. Commun. 21(4), 106–112 (2014)

    Article  Google Scholar 

  119. Subramaniam, N.: Google buys slicklogin: this is how its sound-based password system works (2014). https://www.firstpost.com/tech/news-analysis/google-buys-slicklogin-heres-sound-based-password-system-works-3647955.html

  120. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)

  121. Tromba, D., Huber, J.: Assessment and guidance for autosar secure onboard communication application. In: 17th Escar Europe: Embedded Security in Cars (Konferenzveröffentlichung). (Extended Abstract) (2019)

    Google Scholar 

  122. Van Goethem, T., Scheepers, W., Preuveneers, D., Joosen, W.: Accelerometer-based device fingerprinting for multi-factor mobile authentication. In: Caballero, J., Bodden, E., Athanasopoulos, E. (eds.) ESSoS 2016. LNCS, vol. 9639, pp. 106–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30806-7_7

    Chapter  Google Scholar 

  123. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth-a simple, backward compatible broadcast authentication protocol for CAN bus. In: ECRYPT Workshop on Lightweight Cryptography, vol. 2011, p. 20 (2011)

    Google Scholar 

  124. Wang, H., Cheng, W., Xu, C., Zhang, M., Hu, L.: Method for identifying pseudo GPS signal based on radio frequency fingerprint. In: 2018 10th International Conference on Communications, Circuits and Systems (ICCCAS), pp. 354–358 (2018)

    Google Scholar 

  125. Wang, Q., Sawhney, S.: Vecure: a practical security framework to protect the can bus of vehicles. In: 2014 International Conference on the Internet of Things (IOT), pp. 13–18. IEEE (2014)

    Google Scholar 

  126. Wang, Y., Yang, X., Zhao, Y., Liu, Y., Cuthbert, L.: Bluetooth positioning using RSSI and triangulation methods. In: 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC), pp. 837–842 (2013)

    Google Scholar 

  127. Weimerskirch, A.: Automotive and industrial data security. In: Cybersecurity and Cyber-physical Systems Workshop (2012)

    Google Scholar 

  128. Weisglass, Y., Oren, Y.: Authentication method for can messages. Escar Europe (2016)

    Google Scholar 

  129. Woo, S., Jo, H.J., Lee, D.H.: A practical wireless attack on the connected car and security protocol for in-vehicle can. IEEE Trans. Intell. Transp. Syst. 16(2), 993–1006 (2014)

    Google Scholar 

  130. Wu, Q., et al.: Deep learning based RF fingerprinting for device identification and wireless security. Electron. Lett. 54(24), 1405–1407 (2018)

    Article  Google Scholar 

  131. Yang, J., Chen, Y., Lawrence, V.B., Swaminathan, V.: Robust wireless localization to attacks on access points. In: 2009 IEEE Sarnoff Symposium, pp. 1–5 (2009)

    Google Scholar 

  132. Yu, J., et al.: Radio frequency fingerprint identification based on denoising autoencoders, July 2019

    Google Scholar 

  133. Yuan, L., Hu, Y., Li, Y., Zhang, R., Zhang, Y., Hedgpeth, T.: Secure RSS-fingerprint-based indoor positioning: attacks and countermeasures. In: 2018 IEEE Conference on Communications and Network Security (CNS), pp. 1–9 (2018)

    Google Scholar 

  134. Zalewski, M.: p0f (2012). http://lcamtuf.coredump.cx/p0f3/

  135. Zeng, H., Liu, J., Yu, J., Kang, X., Shi, Y., Wang, Z.: A framework of camera source identification Bayesian game. IEEE Trans. Cybern. 47, 1–12 (2016). https://doi.org/10.1109/TCYB.2016.2557802

    Article  Google Scholar 

  136. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  137. Zhou, C., Xie, H., Shi, J.: Wi-Fi indoor location technology based on k-means algorithm. In: Zhang, Z., Shen, Z.M., Zhang, J., Zhang, R. (eds.) LISS 2014, pp. 765–770. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-43871-8_110

    Chapter  Google Scholar 

  138. Zhuang, Y., Yang, J., Li, Y., Qi, L., El-Sheimy, N.: Smartphone-based indoor localization with Bluetooth low energy beacons. Sensors 16(5), 596 (2016)

    Article  Google Scholar 

  139. Zuo, Z., Liu, L., Zhang, L., Fang, Y.: Indoor positioning based on Bluetooth low-energy beacons adopting graph optimization. Sensors 18, 3736 (2018). https://doi.org/10.3390/s18113736

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Javier Hernandez-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernandez-Castro, C.J. (2022). Machine Learning and Deep Learning for Hardware Fingerprinting. In: Batina, L., Bäck, T., Buhan, I., Picek, S. (eds) Security and Artificial Intelligence. Lecture Notes in Computer Science, vol 13049. Springer, Cham. https://doi.org/10.1007/978-3-030-98795-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98795-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98794-7

  • Online ISBN: 978-3-030-98795-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics