Skip to main content

An Overview on LoRaWAN Technology Simulation Tools

  • Conference paper
  • First Online:
Advances on Intelligent Informatics and Computing (IRICT 2021)

Abstract

Low-Power Wide Area Networks (LPWAN) technologies are playing a pivotal role in the IoT applications owing to their capability to meet the keys IoT requirements, i.e., long-range, low cost, small data volumes, massive devices number, and low energy consumption. The creation of new public and private LoRaWAN networks necessitates the use of avoiding node limits and collision prevention measures. Designers of IoT systems confront difficulty in determining the scalability of a given technology, with an emphasis on unlicensed frequency bandwidth (ISM) transmission in densely populated locations. However, picking the best simulation software might be a challenge. To provide a conceptual overview of seven LoRaWAN simulation tools, this paper outlines their key characteristics and the sorts of experiments they support. LoRaWAN simulators, resource utilization, and performance evaluation are all covered in-depth in this report. Furthermore, we classify and compare the most important simulation tools for investigating and analyzing LoRa/LoRaWAN network emulators that have been developed recently. This article will be used to help other researchers decide whether LoRaWAN simulation tool is best for their specific requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mikhaylov, K., Petäjäjärv, J., Hänninen, T.: Analysis of the capacity and scalability of the lora wide area network technology (2016)

    Google Scholar 

  2. Attia, T., et al.: Experimental characterization of LoRaWAN link quality. In: 2019 IEEE Global Communications Conference (GLOBECOM) (2019)

    Google Scholar 

  3. Salama, M., Elkhatib, Y., Blair, G.: IoTNetSim: a modelling and simulation platform for End-to-End IoT services and networking, pp. 251–261 (2019)

    Google Scholar 

  4. Piechowiak, M., Zwierzykowski, P.: Simulations of the MAC Layer in the LoRaWAN Networks. J. Telecommun. Inf. Technol. (2020)

    Google Scholar 

  5. Hornbuckle, C.A.: Fractional-N synthesized chirp generator. Google Patents (2010)

    Google Scholar 

  6. Semtech, SX1272/3/6/7/8: LoRa Modem Designer’s Guide (2013). www.semtech.com

  7. Bouguera, T., et al.: Energy consumption model for sensor nodes based on LoRa and LoRaWAN. Sensors 18(7) (2018)

    Google Scholar 

  8. Augustin, A., et al.: A study of LoRa: long range & low power networks for the Internet of Things. Sensors 16, 1466 (2016)

    Article  Google Scholar 

  9. Raza, U., Kulkarni, P., Sooriyabandara, M.: Low power wide area networks: an overview. IEEE Commun. Surv. Tutor. (2017)

    Google Scholar 

  10. Bor, M., et al.: Do LoRa Low-Power Wide-Area Networks Scale? (2016)

    Google Scholar 

  11. Farooq, M.O., Pesch, D.: Poster: extended LoRaSim to simulate multiple IoT applications in a LoRaWAN. In: EWSN (2018)

    Google Scholar 

  12. Farooq, M., Pesch, D.: Extending LoRaSim to simulate multiple IoT applications in a LoRaWAN (2018)

    Google Scholar 

  13. Zorbas, D., et al.: Optimal data collection time in LoRa networks—a time-slotted approach. Sensors 21(4), 1193 (2021)

    Article  MathSciNet  Google Scholar 

  14. Abdelfadeel, K., Farrell, T., Pesch, D.: How to make firmware updates over LoRaWAN possible (2020)

    Google Scholar 

  15. Zorbas, D., Kotzanikolaou, P., Pesch, D.: TS-LoRa: time-slotted LoRaWAN for the industrial Internet of Things. Comput. Commun. 153, 1–10 (2020)

    Article  Google Scholar 

  16. Abdelfadeel, K.Q., et al.: FREE—fine-grained scheduling for reliable and energy-efficient data collection in LoRaWAN. IEEE Internet Things J. 7(1), 669–683 (2020)

    Article  Google Scholar 

  17. Henderson, T.R., et al.: ns-3 project goals. In: Proceeding from the 2006 Workshop on ns-2: the IP Network Simulator (2006)

    Google Scholar 

  18. Simulator, N.: https://www.nsnam.org/. Accessed Nov 2020

  19. Abeele, F.V.D., et al.: Scalability Analysis of Large-Scale LoRaWAN Networks in ns-3. IEEE Internet Things J. 4(6), 2186–2198 (2017)

    Article  Google Scholar 

  20. Bilalb, S.M., Othmana, M.: A performance comparison of network simulators for wireless networks. arXiv preprint arXiv:1307.4129 (2013)

    Google Scholar 

  21. Reynders, B., Wang, Q., Pollin, S.: A LoRaWAN module for ns-3: implementation and evaluation. In: Proceedings of the 10th Workshop on ns-3 - WNS3 2018, pp. 61–68 (2018)

    Google Scholar 

  22. Khan, F.H., Portmann, M.: Experimental evaluation of LoRaWAN in NS-3. In: 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), pp. 453–460 (2018)

    Google Scholar 

  23. To, T., Duda, A.: Simulation of LoRa in NS-3: improving LoRa performance with CSMA. In: 2018 IEEE International Conference on Communications (ICC) (2018)

    Google Scholar 

  24. Finnegan, J., Brown, S., Farrell, R.: Modeling the energy consumption of LoRaWAN in ns-3 based on real world measurements. In: 2018 Global Information Infrastructure and Networking Symposium (GIIS) (2018)

    Google Scholar 

  25. Stellin, M., Sabino, S., Grilo, A.: LoRaWAN networking in mobile scenarios using a WiFi Mesh of UAV gateways. Electronics 9(4) (2020)

    Google Scholar 

  26. Hariprasad, S., Deepa, T.: Improving unwavering quality and adaptability analysis of LoRaWAN. Procedia Comput. Sci. 171, 2334–2342 (2020)

    Article  Google Scholar 

  27. Finnegan, J., Farrell, R., Brown, S.: Analysis and enhancement of the LoRaWAN adaptive data rate scheme. IEEE Internet Things J. 7(8), 7171–7180 (2020)

    Article  Google Scholar 

  28. Khan, F.H., Jurdak, R., Portmann, M.: A model for reliable uplink transmissions in LoRaWAN. In: 2019 15th International Conference on Distributed Computing in Sensor Systems (Dcoss), pp. 147–156 (2019)

    Google Scholar 

  29. Finnegan, J., Brown, S., Farrell, R.: Evaluating the scalability of LoRaWAN gateways for class B communication in ns-3. In: 2018 IEEE Conference on Standards for Communications and Networking (IEEE CSCN) (2018)

    Google Scholar 

  30. Mariusz Slabicki, G.P., Di Francesco, M.: https://omnetpp.org/download-items/FLoRA.html Accessed 2020. 2017

  31. site., F.o., FLoRa. 2020

    Google Scholar 

  32. Mariusz Slabicki, G.P., Di Francesco, M.: Adaptive Configuration of LoRa Networks for Dense IoT Deployments by OMNet++ (FLORA) simulator (2018)

    Google Scholar 

  33. Cupcarbon., Cupcarbon. http://cupcarbon.com. Accessed 2020

  34. Lopez-Pavon, C., S. Sendra, Valenzuela-Valdés, J.F.: Evaluation of CupCarbon network simulator for wireless sensor networks. Netw. Protoc. Algorithms 10(2), 1–27 (2018)

    Google Scholar 

  35. Cupcarbon. Cupcarbon User Guide (2020). https://cupcarbon.com/cupcarbon_ug.html

  36. Lounis, M., et al.: 3D Environment for IoT Simulation Under CupCarbon Platform (2017)

    Google Scholar 

  37. Sanchez, E.B., Sadok, D.F.H.: LoRa and LoRaWAN protocol analysis using cupcarbon. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds.) WITCOM 2020. CCIS, vol. 1280, pp. 352–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62554-2_26

    Chapter  Google Scholar 

  38. John, A., Ananth Kumar, T., Adimoolam, M., Blessy, A.: Energy management and monitoring using iot with cupcarbon platform. In: Balusamy, B., Chilamkurti, N., Kadry, S. (eds.) Green Computing in Smart Cities: Simulation and Techniques. GET, pp. 189–206. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-48141-4_10

    Chapter  Google Scholar 

  39. Mehdi, K., et al.: CupCarbon: a multi-agent and discrete event wireless sensor network design and simulation tool (2014)

    Google Scholar 

  40. Croce, D., M.G., Mangione, S., Santaromita, G., Tinnirello, I. (2018). http://lora.tti.unipa.it/

  41. Bardram, A.V.T., et al.: LoRaWan capacity simulation and field test in a Harbour environment. In: 2018 Third International Conference on Fog and Mobile Edge Computing (Fmec), pp. 193–198 (2018)

    Google Scholar 

  42. Abbas, A.H., Audah, L., Alduais, N.A.M.: An efficient load balance algorithm for vehicular ad-hoc network. In: 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS) (2018)

    Google Scholar 

  43. Yu, F.H., Zhu, Z.M., Fan, Z.: Study on the feasibility of LoRaWAN for smart city applications. In: 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (Wimob), pp. 334–340 (2017)

    Google Scholar 

  44. Dalela, P.K., Sachdev, S., Tyagi, V.: LoRaWAN network capacity for practical network planning in India. In: 2019 Ursi Asia-Pacific Radio Science Conference (Ap-Rasc) (2019)

    Google Scholar 

  45. Mroue, H., et al.: LoRa+: An extension of LoRaWAN protocol to reduce infrastructure costs by improving the Quality of Service. Internet Things 9, 100176 (2020)

    Article  Google Scholar 

  46. SimpleSoft. SimpleIoTSimulator (2019). https://www.simplesoft.com/SimpleIoTSimulator.html. Accessed 23 Jun 2021

  47. Lab, M. Mbed Simulator (2019). https://os.mbed.com/blog/entry/introducing-mbed-simulator/. Accessed 23 Jun 2021

  48. Farooq, M.O., Pesch, D.: Evaluation of multi-gateway LoRaWAN with different data traffic models. In: 2018 IEEE 43rd Conference on Local Computer Networks (LCN) (2018)

    Google Scholar 

  49. Hassan, K.: Resource Management and IP Interoperability for Low Power Wide Area Networks (2020)

    Google Scholar 

  50. Abdelfadeel, K., Cionca, V., Pesch, D.: A Fair Adaptive Data Rate Algorithm for LoRaWAN (2018)

    Google Scholar 

  51. Bor, M., Roedig, U.: LoRa transmission parameter selection. In: 2017 13th International Conference on Distributed Computing in Sensor Systems (DCOSS) (2017)

    Google Scholar 

  52. Voigt, T., et al.: Mitigating inter-network interference in LoRa networks (2016)

    Google Scholar 

  53. Bor, M., King, A., Roedig, U.: Lifetime bounds of wi-fi enabled sensor nodes. Procedia Comput. Sci. 52, 1108–1113 (2015)

    Article  Google Scholar 

  54. Bor, M., Roedig, U.: OpenCL as wireless sensor network programming abstraction (2014)

    Google Scholar 

  55. Ta, D.-T., et al.: LoRa-MAB: a flexible simulator for decentralized learning resource allocation in IoT networks, pp. 55–62 (2019)

    Google Scholar 

  56. Ta, D., et al.: LoRa-MAB: toward an intelligent resource allocation approach for LoRaWAN. In: 2019 IEEE Global Communications Conference (GLOBECOM) (2019)

    Google Scholar 

  57. Reynders, B., et al.: Improving reliability and scalability of LoRaWANs through lightweight scheduling. IEEE Internet Things J. 5(3), 1830–1842 (2018)

    Article  Google Scholar 

  58. Magrin, D., Centenaro, M., Vangelista, L.: Performance evaluation of LoRa networks in a smart city scenario thesis. in book. (2017)

    Google Scholar 

  59. Tomic, I., et al.: The limits of LoRaWAN in event-triggered wireless networked control systems. In: 2018 Ukacc 12th International Conference on Control (Control), pp. 101–106 (2018)

    Google Scholar 

  60. Croce, D., et al.: Impact of LoRa imperfect orthogonality: analysis of link-level performance. matlab. IEEE Commun.s Lett. 22(4), 796–799 (2018)

    Article  Google Scholar 

  61. Gucciardo, M., Tinnirello, I., Garlisi, D.: Demo: a cell-level traffic generator for LoRa networks. matlab. ACM (2017)

    Google Scholar 

  62. Marini, R., Cerroni, W., Buratti, C.: A novel collision-aware adaptive data rate algorithm for LoRaWAN networks. IEEE Internet Things J. 8(4), 2670–2680 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Universiti Malaysia Pahang (www.ump.edu.my), Malaysia, under the Post Graduate Research Scheme PGRS200340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukarram A. M. Almuhaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Almuhaya, M.A.M., Jabbar, W.A., Sulaiman, N., Sulaiman, A.H.A. (2022). An Overview on LoRaWAN Technology Simulation Tools. In: Saeed, F., Mohammed, F., Ghaleb, F. (eds) Advances on Intelligent Informatics and Computing. IRICT 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-98741-1_29

Download citation

Publish with us

Policies and ethics