Skip to main content

Introduction

  • Chapter
  • First Online:
Probiotics in Aquaculture
  • 533 Accesses

Abstract

A wide range of bacteria, yeasts, micro-algae and bacteriophages has been examined as probiotics, in either cellular or acellular form, for use in aquaculture with the benefits including improved growth and health, immunomodulation and disease protection.

Probiotic – from the Latin/Greek meaning “for life”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin B, Baudet E, Stobie M (1992) Inhibition of bacterial fish pathogens by Tetraselmis suecica. J Fish Dis 15:55–61

    Article  Google Scholar 

  • Austin B, Billaud AC (1990) Inhibition of the fish pathogen, Serratia liquefaciens, by an antibiotic-producing isolate of Planococcus recovered from sea water. J Fish Dis 13:553–556

    Article  Google Scholar 

  • Carnevali O, Maradonna F, Gioacchini G (2017) Integrated control of fish metabolism, wellbeing and reproduction: the role of probiotic. Aquaculture 472:144–155

    Article  CAS  Google Scholar 

  • Dopazo CP, Lemos ML, Lodeiros C, Bolinches J, Barja JL, Toranzo AE (1988) Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J Appl Bacteriol 65:97–101

    Article  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  CAS  Google Scholar 

  • Fuller R (1992) History and development of probiotics. In: Fuller R (ed) Probiotics: the scientific basis. Springer, Dordrecht, pp 1–8

    Chapter  Google Scholar 

  • Gasbarini G, Bonvicini F, Gramenzi A (2016) Probiotics history. J Clin Gastroenerol 50:S116–S119. https://doi.org/10.1097/MCG.0000000000000697

    Article  CAS  Google Scholar 

  • Gatesoupe FJ (1994) Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic vibrio. Aquat Living Resour 7:277–282

    Article  Google Scholar 

  • Gatesoupe FJ (1999) The use of probiotics in aquaculture. Aquaculture 180:147–165

    Article  Google Scholar 

  • Hossain MI, Sadekuzzaman M, Ha S-D (2017) Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review. Food Res Int 100:63–73

    Article  CAS  Google Scholar 

  • Hung AT, Lin SY, Yang TY, Chou CK, Liu HC, Lu JJ, Lien TF (2012) Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Anim Prod Sci 52:874–879

    Article  CAS  Google Scholar 

  • Hungin APS, Mitchell CR, Whorwell P et al (2018) Systematic review: probiotics in the management of lower gastrointestinal symptoms—an updated evidence-based international consensus. Aliment Pharmacol Ther 47:1054–1070

    Article  CAS  Google Scholar 

  • Kamei Y, Yoshimizu M, Ezura Y, Kimura T (1988) Screening of bacteria with antiviral activity from fresh water salmonid hatcheries. Microbiol Immunol 32:67–73

    Article  CAS  Google Scholar 

  • Kollath W (1953) The increase of the diseases of civilization and their prevention. Münch Med Wochenschr 95:1260–1262

    CAS  PubMed  Google Scholar 

  • Kozasa M (1986) Toyocerin (Bacillus toyoi) as growth promoter for animal feeding. Microbiol Alim Nutr 4:121–135

    Google Scholar 

  • Lilly DM, Stillwell RH (1965) Probiotics: growth-promoting factors produced by microorganisms. Science 147:747–748

    Article  CAS  Google Scholar 

  • Menconi A, Kallapura G, Latorre JD, Morgan MJ, Pumford NR, Hargis BM, Tellez G (2014) Identification and characterization of lactic acid bacteria in a commercial probiotic culture. Biosci Microb Food H 33:25–30

    Google Scholar 

  • Nimrat S, Suksawat S, Boonthai T, Vuthiphandchai V (2012) Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Vet Microbiol 159:443–450

    Article  Google Scholar 

  • Ozen M, Dinleyici EC (2015) The history of probiotics. Benef Microbes 6:159–165

    Article  CAS  Google Scholar 

  • Parker RB (1974) The other half of the antibiotic story. Anim Nutr Health 29:4–8

    Google Scholar 

  • Rengpipat S, Phianphak W, Piyatiratitivorakul S, Menasveta P (1998) Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture 167:301–313

    Article  Google Scholar 

  • Rollo A, Sulpizio R, Nardi M, Silvi S, Orpianesi C, Caggiano M, Cresci A, Carnevali O (2006) Live microbial feed supplement in aquaculture for improvement of stress tolerance. Fish Physiol Biochem 32:167–177

    Article  CAS  Google Scholar 

  • Sanders ME, Merenstein D, Merrifield CA, Hutkins R (2018) Probiotics for human use. Nutr Bull 43:212–225

    Article  Google Scholar 

  • Sharifuzzaman SM, Austin B (2017) Probiotics for disease control in aquaculture. In: Austin B, Newaj-Fyzul A (eds) Diagnosis and control of diseases of fish and shellfish. Wiley, Oxford, pp 189–222

    Chapter  Google Scholar 

  • Shim Y, Ingale S, Kim J, Kim K, Seo D, Lee S, Kwon I (2012) A multi-microbe probiotic formulation processed at low and high drying temperatures: effects on growth performance, nutrient retention and caecal microbiology of broilers. Brit Poultry Sci 53:482–490

    Article  CAS  Google Scholar 

  • Upadhaya SD, Hossiendoust A, Kim IH (2016) Probiotics in Salmonella-challenged Hy-Line brown layers. Poult Sci 95:1894–1897

    Article  CAS  Google Scholar 

  • Wisener LV, Sargeant JM, O’Connor AM, Faires MC, Glass-Kaastra SK (2015) The use of direct-fed microbials to reduce shedding of Escherichia coli O157 in beef cattle: A systematic review and meta-analysis. Zoonoses Public Hlth 62:75–89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.M. Sharifuzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharifuzzaman, S., Austin, B. (2022). Introduction. In: Austin, B., Sharifuzzaman, S. (eds) Probiotics in Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-98621-6_1

Download citation

Publish with us

Policies and ethics