Skip to main content

CAR-T Cells and Other Related Technologies

  • Chapter
  • First Online:
The Golden Guide to Oncologic Pharmacy

Abstract

Chimeric antigen receptor (CAR) cells (including T lymphocytes and natural killer cells) are cells modified to express a transmembrane protein that exerts a cytotoxic effect against target cancer cells. CAR cells are activated when interacting with tumor antigens surpassing TCR-dependent mechanisms, thus inducing cell activation and promoting cell death by apoptosis induction through various pathways. Hematological-related surface antigens are the most successful targets used in clinical trials of CAR-T cells against cancer, even though several ongoing trials are currently targeting antigens related to many solid tumors. Understanding structural components and their contribution to both activation and proliferation of CAR cells is valuable to engineer new cells. Promising preclinical trials have studied the use of many specific domains, such as scFv, bispecific, and nanobodies. The affinity of extracellular components, choice of co-stimulatory domain, and quality of synapse formation are key features to consider to build a “good” CAR cell and control its cytotoxic effects, such as cytokine release syndrome. In vitro and in vivo parameters, such as “on-target/off-tumor” effects and overall relapse rate, have consequences on the safety and efficacy of CAR cells and reflect on their success in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott RC, Cross RS, Jenkins MR. Finding the keys to the CAR: identifying novel target antigens for T cell redirection immunotherapies. Int J Mol Sci. 2020;21:515. MDPI AG.

    Article  CAS  PubMed Central  Google Scholar 

  2. Fousek K, Watanabe J, Joseph SK, et al. CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression. Leukemia. 2021;35(1):75–89. Springer Nature..

    Article  CAS  PubMed  Google Scholar 

  3. Gagelmann N, Ayuk F, Atanackovic D, Kröger N. B cell maturation antigen-specific chimeric antigen receptor T cells for relapsed or refractory multiple myeloma: a meta-analysis. Eur J Haematol. 2020;104(4):318–27. Blackwell Publishing Ltd.

    Article  CAS  PubMed  Google Scholar 

  4. Golubovskaya V, Berahovich R, Zhou H, et al. CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth. Cancers. 2017;9:139. MDPI AG.

    Article  PubMed Central  CAS  Google Scholar 

  5. Gu R, Liu F, Zou D, et al. Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia. J Hematol Oncol. 2020;13:122. BioMed Central Ltd.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Guo Y, Feng K, Tong C, et al. Efficiency and side effects of anti-CD38 CAR T cells in an adult patient with relapsed B-ALL after failure of bi-specific CD19/CD22 CAR T cell treatment. Cell Mol Immunol. 2020;17(4):430–2. Springer Nature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han L, Zhang JS, Zhou J, et al. Single VHH-directed BCMA CAR-T cells cause remission of relapsed/refractory multiple myeloma. Leukemia. 2021;35(10):3002–6. Springer Nature.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hegde M, Mukherjee M, Grada Z, et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Investig. 2016;126(8):3036–52. American Society for Clinical Investigation.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hyrenius-Wittsten A, Roybal KT. Paving new roads for CARs. Trends in Cancer:1–10. Elsevier Inc. 2019. Available from: https://doi.org/10.1016/j.trecan.2019.09.005.

  10. Jackson HJ, Rafiq S, Brentjens RJ. Driving CAR T-cells forward. Nat Rev Clin Oncol. 2016;13(6):370–83. Nat Publ GroupNature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kang CH, Kim Y, Lee HK, et al. Identification of potent cd19 scFv for CAR T cells through scfv screening with NK/T-cell line. Int J Mol Sci. 2020;21(23):1–12. MDPI AG.

    Article  Google Scholar 

  12. Kriegsmann K, Kriegsmann M, Cremer M, et al. Cell-based immunotherapy approaches for multiple myeloma. Br J Cancer. 2019;120(1):38–44. Nat Publ GroupNature Publishing Group.

    Article  PubMed  Google Scholar 

  13. Lorentzen CL, Straten PT. CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol. 2015;82(4):307–19. Blackwell Publishing Ltd.

    Article  CAS  PubMed  Google Scholar 

  14. Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol. 2021;14(1):161. Available from: https://jhoonline.biomedcentral.com/articles/10.1186/s13045-021-01170-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ochi T, Maruta M, Tanimoto K, et al. A single-chain antibody generation system yielding CAR-T cells with superior anti-tumor function. Commun Biol. 2021;4:273. Nature Research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rodríguez-Otero P, Prósper F, Alfonso A, Paiva B, San Miguel JF. Car T-cells in multiple myeloma are ready for prime time. J Clin Med. 2020;9(3577):1–16. MDPI.

    Google Scholar 

  17. Strobel SB, Machiraju D, Hülsmeyer I, et al. Expression of potential targets for cell-based therapies on melanoma cells. Life. 2021;11:269. MDPI AG.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei J, Han X, Bo J, Han W. Target selection for CAR-T therapy. J Hematol Oncol. 2019;12:62. BioMed Central Ltd.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xie YJ, Dougan M, Ingram JR, et al. Improved anti-tumor efficacy of chimeric antigen receptor T cells that secrete single-domain antibody fragments. Cancer Immunol Res. 2020;8(4):518–29. American Association for Cancer Research Inc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xie YJ, Dougan M, Jailkhani N, et al. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci U S A. 2019;116(16):7624–31. National Academy of Sciences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu JIE, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci U S A. 2019;116(19):9543–51. National Academy of Sciences.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ying Z, Huang XF, Xiang X, et al. A safe and potent anti-CD19 CAR T cell therapy. Nat Med. 2019;25(6):947–53. Nat Publ GroupNature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hwang J-R, Byeon Y, Kim D, Park S-G. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med. 2020. Springer Science and Business Media LLC.;52(5):750–61. https://doi.org/10.1038/s12276-020-0435-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen P-H, Lipschitz M, Weirather JL, Jacobson C, Armand P, Wright K, Hodi FS, Roberts ZJ, Sievers SA, Rossi J. Activation of CAR and non-CAR T cells within the tumor microenvironment following CAR T cell therapy. JCI Insight. 2020. American Society for Clinical Investigation. PMID: 32484797; PMCID: PMC7406247.;5(12):1–12. https://doi.org/10.1172/jci.insight.134612.

    Article  Google Scholar 

  25. Blache U, Weiss R, Boldt A, Kapinsky M, Blaudszun AR, Quaiser A, Pohl A, Miloud T, Burgaud M, Vucinic V, Platzbecker U, Sack U, Fricke S, Koehl U. Advanced flow cytometry assays for immune monitoring of CAR-T cell applications. Front Immunol. 2021;12:658314. https://doi.org/10.3389/fimmu.2021.658314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu D, Badeti S, Dotti G, Jiang J-G, Wang H, Dermody J, Soteropoulos P, Streck D, Birge RB, Liu C. The role of immunological synapse in predicting the efficacy of chimeric antigen receptor (CAR) immunotherapy. Cell Commun Signal. 2020. 25 ago. Springer Science and Business Media LLC.;18(1):1–20. https://doi.org/10.1186/s12964-020-00617-7.

    Article  CAS  Google Scholar 

  27. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alabanza L, Pegues M, Geldres C, Shi V, Wiltzius JJW, Sievers SA, et al. Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther. 2017;25(11):2452–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boomer JS, Green JM. An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol. 2010;2:8.

    Article  CAS  Google Scholar 

  30. Boucher JC, Li G, Kotani H, et al. CD28 costimulatory domain–targeted mutations enhance chimeric antigen receptor T-cell function. Cancer Immunol Res. 2021;9:62–74.

    Article  CAS  PubMed  Google Scholar 

  31. Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118:4817–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cartellieri M, et al. Chimeric antigen receptor-engineered T cells for immunotherapy of cancer. J Biomed Biotechnol. 2010;2010:956304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Caruso HG, Hurton LV, Najjar A, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumour activity. Cancer Res. 2015;75(17):3505–18. American Association for Cancer Research Inc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chmielewski M, Abken H. TRUCKS, the fourth-generation CAR T cells: current developments and clinical translation. Adv Cell Gene Ther. 2020;3:e84.

    Article  CAS  Google Scholar 

  35. Chmielewski M, Hombach A, Heuser C, Adams GP, Abken H. T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity. J Immunol. 2004;173:7647–53. American Association of Immunologists Inc.

    Article  CAS  PubMed  Google Scholar 

  36. Cho JH, Collins JJ, Wong WW. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell. 2018;173(6):1426–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chu F, Cao J, Neelalpu SS. Versatile CAR T-cells for cancer immunotherapy. Contemp Oncol (Pozn). 2018;22:73–80.

    Google Scholar 

  38. Fos C, Salles A, Lang V, Carrette F, Audebert S, Pastor S, Ghiotto M, Olive D, Bismuth G, Nunès JA. ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. J Immunol. 2008;181(3):1969–77.

    Article  CAS  PubMed  Google Scholar 

  39. Grada Z, Hegde M, Byrd T, Shaffer DR, Ghazi A, Brawley VS, Corder A, Schönfeld K, Koch J, Dotti G. TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy. Mol Ther Nucleic Acids. 2013;2:7.

    Article  CAS  Google Scholar 

  40. Guedan S, Calderon H, Posey AD Jr, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev. 2018;12:145–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Guedan S, Chen X, Madar A, Carpenito C, Mcgettigan SE, Frigault MJ, Lee J, Posey AD Jr, Scholler J, Scholler N, Bonneau R, June CH. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood. 2014;124(7):1070–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guedan S, Madar A, Casado-Medrano V, Shaw C, Wing A, Liu F, Young RM, June CH, Posey AD Jr. Single residue in CD28-costimulated CAR-T cells limits long-term persistence and anti-tumor durability. J Clin Invest. 2020;130(6):3087–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guedan S, Posey AD, Shaw C, Wing A, Da T, Patel PR, et al. Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight. 2018;3:1.

    Article  Google Scholar 

  44. Han D, et al. Current progress in CAR-T cell therapy for hematological malignancies. J Cancer. 2021;12(2):326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hombach AA, Heiders J, Foppe M, Chmielewski M, Abken H. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4(+) T cells. Oncoimmunology. 2012;1(4):458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kloss CC, Condomines M, Cartellieri M, Bachmann M, Sadelain M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells. Nat Biotechnol. 2013;31(1):71–5.

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Jiang S, Fang C, Yang S, Olalere D, Pequignot EC, Cogdill AP, Li N, Ramones M, Granda B. Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice. Cancer Res. 2015;75:3596–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, Samanta M, Lakhal M, Gloss B, Danet-Desnoyers G, Campana D, Riley JL, Grupp SA, June CH. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17(8):1453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song DG, Ye Q, Poussin M, Harms GM, Figini M, Powell DJ Jr. CD27 costimulation augments the survival and anti-tumor activity of redirected human T cells in vivo. Blood. 2012;119(3):696–706.

    Article  CAS  PubMed  Google Scholar 

  50. Wang E, Wang LC, Tsai CY, Bhoj V, Gershenson Z, Moon E, Newick K, Sun J, Lo A, Baradet T, Feldman MD, Barrett D, Puré E, Albelda S, Milone MC. Generation of potent T-cell immunotherapy for cancer using DAP12-based, multichain, chimeric immunoreceptors. Cancer Immunol Res. 2015;3(7):815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop HE, Rooney CM, et al. Fine-tuning the CAR spacer improves T-cell potency. OncoImmunology. 2016;5:12.

    Article  CAS  Google Scholar 

  52. Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23–68.

    Article  CAS  PubMed  Google Scholar 

  53. Wu CY, Roybal KT, Puchner EM, Onuffer J, Lim WA. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350:6248.

    Article  Google Scholar 

  54. Zhao J, Lin Q, Song Y, Liu D. Universal CARs, universal T cells, and universal CAR T cells. J Hematol Oncol. 2018;11:1–9.

    Article  CAS  Google Scholar 

  55. Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol Ther. 2010;18:413–20.

    Article  CAS  PubMed  Google Scholar 

  56. OSHU Knight Cancer Institute: CAR T-cell therapy for cancer 2021. Accesses 22 Oct 2021. https://www.ohsu.edu/knight-cancer-institute/car-t-cell-therapy-cancer.

  57. Immunotherapy side effects: CAR T-cell therapy. National Comprehensive Cancer Center. 2020. Accessed 22 Oct 2021. https://www.nccn.org/patients/guidelines/content/PDF/immunotherapy-se-car-tcell-patient.pdf.

  58. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371(16):1507–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lamers CHJ, Sleijfer S, Van Steenbergen S, Van Elzakker P, Van Krimpen B, Groot C, Vulto A, Den Bakker M, Oosterwijk E, Debets R, Gratama JW. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Steentoft C, et al. Glycan-directed CAR-T cells. Glycobiology. 2018;28:656–69.

    Article  CAS  PubMed  Google Scholar 

  62. Murad JP, et al. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol. 2018;9:2268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Cai C, Tang D, Han Y, Shen E, Ahmed OA, Guo C, Shen H, Zeng S. A comprehensive analysis of the fatal toxic effects associated with CD19 CAR-T cell therapy. Aging (Albany NY). 2020;12(18):18741–53. https://doi.org/10.18632/aging.104058. Epub ahead of print. PMID: 32973124; PMCID: PMC7585129.

    Article  CAS  Google Scholar 

  64. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11:69. https://doi.org/10.1038/s41408-021-00459-7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Santomasso BD, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8:958–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee DW, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park JH, Palomba ML, Batlevi CL, Riviere I, Wang X, Senechal B, Furman RR, Bernal Y, Hall M, Pineda J, Diamonte C, Halton E, Brentjens RJ, Sadelain M. A phase I first-in-human clinical trial of CD19-targeted 19-28z/4-1BBL “armored” CAR T cells in patients with relapsed or refractory NHL and CLL including Richter’s transformation. Blood. 2018;132(1 Suppl):224.

    Article  Google Scholar 

  68. Salter AI, et al. Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function. Sci Signal. 2018;11:544.

    Article  CAS  Google Scholar 

  69. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management. Blood. 2016;127(26):3321–30. https://doi.org/10.1182/blood-2016-04-703751. Epub 2016 May 20. PMID: 27207799; PMCID: PMC4929924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Davila ML, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bendle GM, Linnemann C, Hooijkaas AI, Bies L, De Witte MA, Jorritsma A, Kaiser ADM, Pouw N, Debets R, Kieback E, Uckert W, Song JY, Haanen JBAG, Schumacher TNM. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med. 2010;16(5):565–70.

    Article  CAS  PubMed  Google Scholar 

  72. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23(9):2255–66.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J, Wang L. The emerging world of TCR-T cell trials against cancer: a systematic review. Technol Cancer Res Treat. 2019;18:1–13.

    Article  Google Scholar 

  74. Holler PD, Chlewicki LK, Kranz DM. TCRs with high affinity for foreign pMHC show self-reactivity. Nat Immunol. 2003;4(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  75. Chmielewski M, Abken H. TRUCKs: the fourth generation of CARs. Expert Opin Biol Ther. 2015;15(8):1145–54. https://doi.org/10.1517/14712598.2015.1046430.

    Article  CAS  PubMed  Google Scholar 

  76. Lima SCG, Fantacini DMC, Batista LC, Silveira RM, Furtado IP, Rossetti R, Brand H, Covas DT, de Souza LEB. Strategies to enhance the therapeutic efficacy, applicability, and safety of genetically engineered immune cells. Crit Rev Immunol. 2021;41(1):41–67. https://doi.org/10.1615/CritRevImmunol.2021037437.

    Article  PubMed  Google Scholar 

  77. Ciceri F, Bonini C, Marktel S, Zappone E, Servida P, Bernardi M, et al. Anti-tumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood. 2007;109(11):4698–707.

    Article  CAS  PubMed  Google Scholar 

  78. Casucci M, Falcone L, Camisa B, Norelli M, Porcellini S, Stornaiuolo A, et al. Extracellular NGFR spacers allow efficient tracking and enrichment of fully functional CAR-T cells co-expressing a suicide gene. Front Immunol. 2018;9:507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014;5:235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Juillerat A, Marechal A, Filhol JM, Valton J, Duclert A, Poirot L, et al. Design of chimeric antigen receptors with integrated controllable transient functions. Sci Rep. 2016;6:18950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roybal KT, Williams JZ, Morsut L, Rupp LJ, Kolinko I, Choe JH, et al. Engineering T cells with customized therapeutic response programs using synthetic notch receptors. Cell. 2016;167(2):419–432.e416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fedorov VD, Themeli M, Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci Transl Med. 2013;5(215):215ra172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wilkie S, Van Schalkwyk MCI, Hobbs S, Davies DM, Van der Stegen SJC, Pereira ACP, Burbridge SE, Box C, Eccles SA, Maher J. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide complementary signaling. J Clin Immunol. 2012;32(5):1059–70.

    Article  CAS  PubMed  Google Scholar 

  84. Kobold S, Grassmann S, Chaloupka M, Lampert C, Wenk S, Kraus F, Rapp M, Düwell P, Zeng Y, Schmollinger JC, Schnurr M, Endres S, Rothenfußer S. Impact of a new fusion receptor on PD-1-mediated immunosuppression in adoptive T cell therapy. J Natl Cancer Inst. 2015;107(8):djv146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Marofi F, Al-Awad AS, Sulaiman Rahman H, Markov A, Abdelbasset WK, Ivanovna Enina Y, Mahmoodi M, et al. CAR-NK cell: a new paradigm in tumor immunotherapy. Front Oncol. 2021;11:art. no. 673276.

    Article  Google Scholar 

  86. Leyton-Castro NF, Brígido MM, Maranhão AQ. Selection of Antibody Fragments for CAR-T Cell Therapy from Phage Display Libraries. In: Swiech K, Malmegrim KCR, Picanço-Castro V, organizators. Chimeric Antigen Receptor T Cells - Development and Production. São Paulo: Springer; 2020. p. 13–26.

    Google Scholar 

Download references

Acknowledgments

The authors thank Connie McManus for the English review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Rafael Lobo Bezerra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bezerra, M.R.L., Pontes, L.Q., Studart, I.C., de Sousa Lima, B., Furtado, G.P. (2022). CAR-T Cells and Other Related Technologies. In: Schmidt, C.W.P., Otoni, K.M. (eds) The Golden Guide to Oncologic Pharmacy. Springer, Cham. https://doi.org/10.1007/978-3-030-98596-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98596-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98595-0

  • Online ISBN: 978-3-030-98596-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics