Skip to main content

Pharmaceutical Biotechnology: The Role of Biotechnology in the Drug Discovery and Development

  • Chapter
  • First Online:
Fundamentals and Advances in Medical Biotechnology

Abstract

Biotechnology has made a great impact on the drug discovery and development process and improved human health and well-being in an unprecedented manner. It happened due to better understanding of the pathological signaling pathways, which allowed identification of the potential drug targets. Besides, advancements in cell and molecular biology techniques made the researchers able to screen the drugs in a timely manner and to gather mechanism of action and the toxicity of the drugs more efficiently. This decreased the failure rate of the drugs and improved therapeutic outcomes. This chapter provides a brief overview of the overall processes involved in drug discovery and development. Thus, our aim here is to provide readers a perspective on how biotechnology is increasingly becoming a reliable tool in the drug industry with a significant role in rational drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kesik-Brodacka M (2018) Progress in biopharmaceutical development. Biotechnol Appl Biochem 65(3):306–322

    Article  CAS  PubMed  Google Scholar 

  2. Boulnois GJ (2000) Drug discovery in the new millennium: the pivotal role of biotechnology. Trends Biotechnol 18(1):31–33

    Article  CAS  PubMed  Google Scholar 

  3. Food, Drug Administration HHS (2012) International Conference on Harmonisation; addendum to International Conference on Harmonisation Guidance on S6 Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals; availability. Not Fed Regist 77(97):29665–29666

    Google Scholar 

  4. Minikel EV, Karczewski KJ, Martin HC, Cummings BB, Whiffin N, Rhodes D et al (2021) Author Correction: Evaluating drug targets through human loss-of-function genetic variation. Nature 590:E56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salfeld JG (2004) Use of new biotechnology to design rational drugs against newly defined targets. Best Pract Res Clin Rheumatol 18(1):81–95

    Article  CAS  PubMed  Google Scholar 

  6. Jaymand M (2020) Chemically modified natural polymer-based theranostic nanomedicines: are they the golden gate toward a de novo clinical approach against cancer? ACS Biomater Sci Eng 6(1):134–166

    Article  CAS  PubMed  Google Scholar 

  7. Cavagnaro JA (2002) Preclinical safety evaluation of biotechnology-derived pharmaceuticals. Nat Rev Drug Discov 1(6):469–475

    Article  CAS  PubMed  Google Scholar 

  8. Jain KK (2009) The role of nanobiotechnology in drug discovery. Adv Exp Med Biol 655:37–43

    Article  CAS  PubMed  Google Scholar 

  9. Steinmetz KL, Spack EG (2009) The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol 9(Suppl 1):S2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yokota H (2019) Applications of proteomics in pharmaceutical research and development. Biochim Biophys Acta, Proteins Proteomics 1867(1):17–21

    Article  CAS  PubMed  Google Scholar 

  11. Moingeon P (2021) [Applications of artificial intelligence to new drug development]. Ann Pharm Fr 79: 566

    Google Scholar 

  12. Gershell LJ, Atkins JH (2003) A brief history of novel drug discovery technologies. Nat Rev Drug Discov 2(4):321–327

    Article  CAS  PubMed  Google Scholar 

  13. Smith C (2003) Drug target validation: hitting the target. Nature 422(6929):341. 3, 5 passim

    Article  PubMed  CAS  Google Scholar 

  14. Zambrowicz BP, Sands AT (2003) Knockouts model the 100 best-selling drugs--will they model the next 100? Nat Rev Drug Discov 2(1):38–51

    Article  CAS  PubMed  Google Scholar 

  15. Mohs RC, Greig NH (2017) Drug discovery and development: role of basic biological research. Alzheimers Dement (N Y) 3(4):651–657

    Article  Google Scholar 

  16. Knowles J, Gromo G (2003) A guide to drug discovery: target selection in drug discovery. Nat Rev Drug Discov 2(1):63–69

    Article  CAS  PubMed  Google Scholar 

  17. Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J et al (2017) The druggable genome and support for target identification and validation in drug development. Sci Transl Med 9(383):eaag1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730

    Article  CAS  PubMed  Google Scholar 

  19. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16(12):829–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dahlin JL, Walters MA (2014) The essential roles of chemistry in high-throughput screening triage. Future Med Chem 6(11):1265–1290

    Article  CAS  PubMed  Google Scholar 

  22. Nadal E, Olavarria E (2004) Imatinib mesylate (Gleevec/Glivec) a molecular-targeted therapy for chronic myeloid leukaemia and other malignancies. Int J Clin Pract 58(5):511–516

    Article  CAS  PubMed  Google Scholar 

  23. Hantschel O (2012) Structure, regulation, signaling, and targeting of abl kinases in cancer. Genes Cancer 3(5–6):436–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Capdeville R, Buchdunger E, Zimmermann J, Matter A (2002) Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 1(7):493–502

    Article  CAS  PubMed  Google Scholar 

  25. Topol EJ, Moliterno DJ, Herrmann HC, Powers ER, Grines CL, Cohen DJ et al (2001) Comparison of two platelet glycoprotein IIb/IIIa inhibitors, tirofiban and abciximab, for the prevention of ischemic events with percutaneous coronary revascularization. N Engl J Med 344(25):1888–1894

    Article  CAS  PubMed  Google Scholar 

  26. Baron JH, Moiseeva EP, de Bono DP, Abrams KR, Gershlick AH (2000) Inhibition of vascular smooth muscle cell adhesion and migration by c7E3 Fab (abciximab): a possible mechanism for influencing restenosis. Cardiovasc Res 48(3):464–472

    Article  CAS  PubMed  Google Scholar 

  27. Rosenberg LE (1999) The physician-scientist: an essential--and fragile--link in the medical research chain. J Clin Invest 103(12):1621–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Padyukov L, Lampa J, Heimburger M, Ernestam S, Cederholm T, Lundkvist I et al (2003) Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann Rheum Dis 62(6):526–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Vollenhoven RF, Klareskog L (2003) Clinical responses to tumor necrosis factor alpha antagonists do not show a bimodal distribution: data from the Stockholm tumor necrosis factor alpha followup registry. Arthritis Rheum 48(6):1500–1503

    Article  PubMed  CAS  Google Scholar 

  30. Neagu M, Albulescu R, Tanase C (2015) Biotechnology landscape in cancer drug discovery. Fut Sci OA 1(3):FSO12

    Google Scholar 

  31. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2(7):566–580

    Article  CAS  PubMed  Google Scholar 

  32. Wyatt PG, Gilbert IH, Read KD, Fairlamb AH (2011) Target validation: linking target and chemical properties to desired product profile. Curr Top Med Chem 11(10):1275–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Butcher SP (2003) Target discovery and validation in the post-genomic era. Neurochem Res 28(2):367–371

    Article  CAS  PubMed  Google Scholar 

  34. Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964

    Article  CAS  PubMed  Google Scholar 

  35. Kepplinger EE (2015) FDA’s expedited approval mechanisms for new drug products. Biotechnol Law Rep 34(1):15–37

    Article  PubMed  PubMed Central  Google Scholar 

  36. Drews J (2003) Stategic trends in the drug industry. Drug Discov Today 8(9):411–420

    Article  PubMed  Google Scholar 

  37. Rayees S, Joshi JC, Tauseef M, Anwar M, Baweja S, Rochford I et al (2019) PAR2-mediated cAMP generation suppresses TRPV4-dependent Ca(2+) signaling in alveolar macrophages to resolve TLR4-induced inflammation. Cell Rep 27(3):793–805 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris N et al (2012) TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. J Exp Med 209(11):1953–1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nave BT, Becker M, Roenicke V, Henkel T (2002) Validation of targets and drug candidates in an engineered three-dimensional cardiac tissue model. Drug Discov Today 7(7):419–425

    Article  CAS  PubMed  Google Scholar 

  40. Srivastava N, Tauseef M, Amin R, Joshi B, Joshi JC, Kini V et al (2020) Noncanonical function of long myosin light chain kinase in increasing ER-PM junctions and augmentation of SOCE. FASEB J 34(9):12805–12819

    Article  CAS  PubMed  Google Scholar 

  41. Yazbeck P, Tauseef M, Kruse K, Amin MR, Sheikh R, Feske S et al (2017) STIM1 phosphorylation at Y361 Recruits Orai1 to STIM1 puncta and induces Ca(2+) entry. Sci Rep 7:42758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siddiqui MR, Akhtar S, Shahid M, Tauseef M, McDonough K, Shanley TP (2019) miR-144-mediated Inhibition of ROCK1 Protects against LPS-induced Lung Endothelial Hyperpermeability. Am J Respir Cell Mol Biol 61(2):257–265

    Article  CAS  PubMed  Google Scholar 

  43. Joshi JC, Joshi B, Rochford I, Rayees S, Akhter MZ, Baweja S et al (2020) SPHK2-generated S1P in CD11b(+) macrophages blocks STING to suppress the inflammatory function of alveolar macrophages. Cell Rep 30(12):4096–109 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R, Fyrst H et al (2008) Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ Res 103(10):1164–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flier JS (2019) Academia and industry: allocating credit for discovery and development of new therapies. J Clin Invest 129(6):2172–2174

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kleiman RJ, Ehlers MD (2019) How to develop therapeutic and translational research collaborations with industry. Mol Biol Cell 30(22):2741–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schenone M, Dancik V, Wagner BK, Clemons PA (2013) Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9(4):232–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Afshar M (2003) From genes to products: innovations in drug discovery. Drug Discov Today 8(9):392–394

    Article  PubMed  Google Scholar 

  49. Reichert JM (2001) Monoclonal antibodies in the clinic. Nat Biotechnol 19(9):819–822

    Article  CAS  PubMed  Google Scholar 

  50. Glennie MJ, van de Winkel JG (2003) Renaissance of cancer therapeutic antibodies. Drug Discov Today 8(11):503–510

    Article  CAS  PubMed  Google Scholar 

  51. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ et al (2020) Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci 27(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaufmann SHE (2017) Emil von Behring: translational medicine at the dawn of immunology. Nat Rev Immunol 17(6):341–343

    Article  CAS  PubMed  Google Scholar 

  53. Bracha A, Tan SY (2011) Emil von Behring (1854-1917): medicine’s first Nobel laureate. Singap Med J 52(1):1–2

    CAS  Google Scholar 

  54. Kaufmann SH (2017) Remembering Emil von Behring: from tetanus treatment to antibody cooperation with phagocytes. MBio 8(1):e00117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  CAS  PubMed  Google Scholar 

  56. Kellermann SA, Green LL (2002) Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. Curr Opin Biotechnol 13(6):593–597

    Article  CAS  PubMed  Google Scholar 

  57. Furst DE, Schiff MH, Fleischmann RM, Strand V, Birbara CA, Compagnone D et al (2003) Adalimumab, a fully human anti tumor necrosis factor-alpha monoclonal antibody, and concomitant standard antirheumatic therapy for the treatment of rheumatoid arthritis: results of STAR (Safety Trial of Adalimumab in Rheumatoid Arthritis). J Rheumatol 30(12):2563–2571

    CAS  PubMed  Google Scholar 

  58. Rau R (2002) Adalimumab (a fully human anti-tumour necrosis factor alpha monoclonal antibody) in the treatment of active rheumatoid arthritis: the initial results of five trials. Ann Rheum Dis 61(Suppl 2):ii70–ii73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alwawi EA, Mehlis SL, Gordon KB (2008) Treating psoriasis with adalimumab. Ther Clin Risk Manag 4(2):345–351

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Machold KP, Smolen JS (2003) Adalimumab - a new TNF-alpha antibody for treatment of inflammatory joint disease. Expert Opin Biol Ther 3(2):351–360

    CAS  PubMed  Google Scholar 

  61. Kraus VB, Burnett B, Coindreau J, Cottrell S, Eyre D, Gendreau M et al (2011) Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthr Cartil 19(5):515–542

    Article  CAS  Google Scholar 

  62. Ziemssen T, Akgun K, Bruck W (2019) Molecular biomarkers in multiple sclerosis. J Neuroinflammation 16(1):272

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tuda, F. et al. (2022). Pharmaceutical Biotechnology: The Role of Biotechnology in the Drug Discovery and Development. In: Anwar, M., Ahmad Rather, R., Farooq, Z. (eds) Fundamentals and Advances in Medical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-98554-7_9

Download citation

Publish with us

Policies and ethics