Skip to main content

Laboratory Protocols in Medical Biotechnology II (Contemporary Principles and Practices of Bacterial and Human Cell Culture)

  • Chapter
  • First Online:
Fundamentals and Advances in Medical Biotechnology

Abstract

Cell culture is a technique in which eukaryotic cells are grown in the laboratory under controlled physiological conditions with complex growth requirements, whereas microbial culture is the method of growing microorganisms under optimal conditions with simple growth requirements. Both culture techniques address the basic scientific and translational research queries posed by certain scientific beliefs. Owing to the importance of cell and microbial culture in research and development, it is imperative to carry out these techniques with the highest competence and purity so that the reproducibility and homogeneity of the results are maintained. This chapter elucidates the basic principles and techniques of microbial and cell culture. Purification techniques, media formulation, growth requirement of cells, and decontamination measures are thoroughly discussed. Since the outcome of the research needs to be analyzed and interpreted to reach a convincing conclusion, the basic statistical overview and the methods involved in the analysis of research data are also described herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynn DE (2009) Encyclopedia of insects, 2nd edn. Academic Press, New York, pp 144–145

    Book  Google Scholar 

  2. María TA, Paula QR, John C, Gladis MO (2013) Chapter 45. Cell culture and cell analysis. El Rosario University Press, Bogota

    Google Scholar 

  3. Segeritz CP, Vallier L (2017) Cell culture: growing cells as model systems in vitro. In: Basic science methods for clinical researchers. Academic Press, New York, pp 151–172

    Chapter  Google Scholar 

  4. Malik KA, Claus D (1987) Bacterial culture collections: their importance to biotechnology and microbiology. Biotechnol Genet Eng Rev 5(1):137–197

    Article  CAS  PubMed  Google Scholar 

  5. Willey JM, Sherwood L, Woolverton C (2010) Prescott’s microbiology, 8th edn. McGraw Hill Higher Education, Maidenhead

    Google Scholar 

  6. Pelczar MJ (1993) Microbiology concepts and applications. McGraw-Hill, New York

    Google Scholar 

  7. Audrey W, Violeta C, Richard SPH, Amer W, Jeffrey KA, Amitava D (2017) Antibiotics, antimicrobial resistance, antibiotic susceptibility testing, and therapeutic drug monitoring for selected drugs. In: Microbiology and molecular diagnosis in pathology. Elsevier, New York, pp 119–153

    Google Scholar 

  8. Khan ZA, Siddiqui MF, Park S (2019) Current and emerging methods of antibiotic susceptibility testing. Diagnostics (Basel, Switzerland) 9(2):49

    CAS  Google Scholar 

  9. Guardino RF (2005) Early history of microbiology and microbiological methods. Parenteral Drug Association, Wilmington

    Google Scholar 

  10. Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49(11):1749–1755

    Article  CAS  PubMed  Google Scholar 

  11. Canton R, Livermore DM, Morosini MI, Díaz-Regañón J, Rossolini GM (2017) Etest versus broth microdilution for ceftaroline MIC determination with Staphylococcus aureus: results from PREMIUM, a European Multicentre Study. J Antimicrob Chemother 72(2):431–436

    Article  CAS  PubMed  Google Scholar 

  12. Karlowsky JA, Richter SS (2015) Manual of clinical microbiology. Antimicrobial susceptibility testing systems, 11th edn. American Society of Microbiology, Sterling, pp 1274–1285

    Google Scholar 

  13. Zarei O, Dastmalchi S, Hamzeh-Mivehroud M (2016) A simple and rapid protocol for producing yeast extract from Saccharomyces cerevisiae suitable for preparing bacterial culture media. Iran J Pharm Res 15(4):907–913

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sherman F (2002) Getting started with yeast. In: Guthrie C, Fink GR (eds) Methods in enzymology, vol 350. Academic Press, New York, pp 3–41

    Google Scholar 

  15. Hudu SA, Alshrari AS, Syahida A, Sekawi Z (2016) Cell culture, technology: enhancing the culture of diagnosing human diseases. J Clin Diagn Res 10(3):DE01

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pastor DM, Poritz LS, Olson TL, Kline CL, Harris LR III, Koltun WA, Irby RB (2010) Primary cell lines: false representation or model system? A comparison of four human colorectal tumors and their coordinately established cell lines. Int J Clin Exp Med 3(1):69–83

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pamies D, Bal-Price A, Chesné C, Coecke S, Dinnyes A, Eskes C (2018) Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX Altern Anim Exp 35(3):353–378

    Google Scholar 

  18. Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2(1):1–5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hazen SA, Rowe WA, Lynch CJ (1995) Monolayer cell culture of freshly isolated adipocytes using extracellular basement membrane components. J Lipid Res 36(4):868–875

    Article  CAS  PubMed  Google Scholar 

  20. Yao T, Asayama Y (2017) Animal‐cell culture media: history, characteristics, and current issues. Reprod Med Biol 16(2):99–117

    Article  PubMed  PubMed Central  Google Scholar 

  21. Leong DSZ, Tan JGL, Chin CL, Mak SY, Ho YS, Ng SK (2017) Evaluation and use of disaccharides as energy source in protein-free mammalian cell cultures. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  22. Palm W, Thompson CB (2017) Nutrient acquisition strategies of mammalian cells. Nature 546(7657):234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Campbell BK, Onions V, Kendall NR, Guo L, Scaramuzzi RJ (2010) The effect of monosaccharide sugars and pyruvate on the differentiation and metabolism of sheep granulosa cells in vitro. Reproduction 140(4):541–550

    Article  CAS  PubMed  Google Scholar 

  24. Meng M, Chen S, Lao T, Liang D, Sang N (2010) Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Cell Cycle 9(19):3921–3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bjare U (1992) Serum-free cell culture. Pharmacol Ther 53(3):355–374

    Article  CAS  PubMed  Google Scholar 

  26. Butler M, Jenkins H (1989) Nutritional aspects of the growth of animal cells in culture. J Biotechnol 12(2):97–110

    Article  CAS  Google Scholar 

  27. Taub M (1990) The use of defined media in cell and tissue culture. Toxicol In Vitro 4(3):213–225

    Article  CAS  PubMed  Google Scholar 

  28. Sternberg J, Benoit JC, Mercier A, Paquette JC (1964) Role of some trace elements (zinc and cobalt) in the growth of BCG. Rev Can Biol 23:353–365

    CAS  PubMed  Google Scholar 

  29. Bettger WJ, Boyce ST, Walthall BJ, Ham RG (1981) Rapid clonal growth and serial passage of human diploid fibroblasts in a lipid-enriched synthetic medium supplemented with epidermal growth factor, insulin, and dexamethasone. Proc Natl Acad Sci 78(9):5588–5592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bottenstein J, Hayashi I, Hutchings S, Masui H, Mather J, McClure DB et al (1979) The growth of cells in serum-free hormone-supplemented media. In: Methods in enzymology, vol 58. Academic Press, New York, pp 94–109

    Google Scholar 

  31. Keenan J, Pearson D, Clynes M (2006) The role of recombinant proteins in the development of serum-free media. Cytotechnology 50(49):1–3

    Google Scholar 

  32. Puck TT, Marcus PI (1955) A rapid method for viable cell titration and clone production with HeLa cells in tissue culture: the use of X-irradiated cells to supply conditioning factors. Proc Natl Acad Sci U S A 41(7):432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lincoln CK, Gabridge MG (1998) Cell culture contamination: sources, consequences, prevention, and elimination. Methods Cell Biol 57:49–65

    Article  CAS  PubMed  Google Scholar 

  34. Ryan JA (2008) Understanding and managing cell culture contamination. Corning Incorporated, New York

    Google Scholar 

  35. Drexler HG, Uphoff CC (2002) Mycoplasma contamination of cell cultures: incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39(2):75–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Armstrong SE, Mariano JA, Lundin DJ (2010) The scope of mycoplasma contamination within the biopharmaceutical industry. Biologicals 38(2):211–213

    Article  CAS  PubMed  Google Scholar 

  37. Chatterjee R (2007) Cases of mistaken identity. Science 315:928–931

    Article  CAS  PubMed  Google Scholar 

  38. Neimark J (2015) Line of attack. Science. 347(6225):938–940

    Google Scholar 

  39. Nardone RM (2007) Eradication of cross-contaminated cell lines: a call for action. Cell Biol Toxicol 23(6):367–372

    Article  PubMed  Google Scholar 

  40. Nardone RM (2008) Curbing rampant cross-contamination and misidentification of cell lines. Biotechniques 45(3):221–227

    Article  CAS  PubMed  Google Scholar 

  41. Li B, Da WS (2002) Novel methods for rapid freezing and thawing of foods—a review. J Food Eng 54:175–182

    Article  Google Scholar 

  42. Singh RP, Wang CY (1977) Quality of frozen foods—a review. J Food Process Eng 1:97–127

    Article  CAS  Google Scholar 

  43. Chang BS, Kendrick BS, Carpenter JF (1996) Surface-induced denaturation of proteins during freezing and its inhibition by surfactant. J Pharm Sci 85:1325–1330

    Article  CAS  PubMed  Google Scholar 

  44. Bulduk S (2002) Food technology, 1st edn. Detay Publication, New York, pp 147–149. ISBN 975-8326-43-0

    Google Scholar 

  45. Hallier A, Chevallier S, Serot T, Prost C (2007) Freezing–thawing effects on the colour and texture of European catfish flesh. Int J Food Sci Technol 43:1253–1262

    Article  CAS  Google Scholar 

  46. Stevens SS (1964) On the theory of scales of measurement. Science 103:677–680

    Article  Google Scholar 

  47. Stevens SS (1951) Mathematics, measurement and psychophysics. Hand book of experimental psychology. Wiley, New York

    Google Scholar 

  48. Ainley J, Nardi E, Pratt D (1999) Constructing meaning for formal notation in active graphing. Constructing meaning for formal notation in active graphing. In: Schwank I (ed) Proceedings of the first conference of the European Society in Mathematics Education, vol 1, pp 189–200

    Google Scholar 

  49. Shaughnessy JM, Garfield J, Greer B (1996) Data handling. In: International handbook of mathematics education, vol 4. Springer, Dordrecht

    Google Scholar 

  50. Manikandan S (2011) Measures of central tendency: the mean. J Pharmacol Pharmacother 2(2):140–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Clegg F (1987) Introduction to statistics I: descriptive statistics. Br J Hosp Med 37:356–367

    CAS  PubMed  Google Scholar 

  52. McHugh ML (2003) Descriptive statistics, part II: most commonly used descriptive statistics. J Spec Pediatr Nurs 8(3):111–116

    Article  PubMed  Google Scholar 

  53. Kenney JF, Keeping ES (1947) Mathematics of statistics, 2nd edn. Van Nostrand, New York

    Google Scholar 

  54. Zwillinger D (ed) (1995) CRC standard mathematical tables and formulae. CRC, Boca Raton, FL

    Google Scholar 

  55. Karl WB, Kara HW (2018) Data organization in spreadsheets. Am Stat 72(1):2–10

    Article  Google Scholar 

  56. Shashidhar K, Daniel J (2003) Power, spreadsheets. In: Bidgoli H (ed) Encyclopedia of information systems. Elsevier, New York, pp 171–186

    Google Scholar 

  57. Larry JL, Thomas AG (2008) Introduction: the use of spreadsheet software in the application of management science and operations research. Interfaces 38(4):225–227

    Article  Google Scholar 

  58. Austin Z, Sutton J (2014) Qualitative research: getting started. Can J Hosp Pharm 67(6):436–440

    PubMed  PubMed Central  Google Scholar 

  59. Schreier AA, Wilson K, Resnik D (2006) Academic research record-keeping: best practices for individuals, group leaders, and institutions. Acad Med 81(1):42–47

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rather, S.A., Sharma, S., Bhat, N.P., Rather, R.A. (2022). Laboratory Protocols in Medical Biotechnology II (Contemporary Principles and Practices of Bacterial and Human Cell Culture). In: Anwar, M., Ahmad Rather, R., Farooq, Z. (eds) Fundamentals and Advances in Medical Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-98554-7_13

Download citation

Publish with us

Policies and ethics