Skip to main content

New Technologies for Infection Prevention

  • Chapter
  • First Online:
Infection Prevention

Abstract

New technologies to assist in decontamination of the healthcare environment are an area of intense interest. These technologies promise to decrease the bioburden and ultimately reduce healthcare-associated infections (HAIs), though often requiring a significant financial investment. Data to support the efficacy of these technologies in reducing HAIs in the clinical setting remain limited, but certainly decrease in bioburden are evident in the published literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan DJ, Deloney VM, Bartlett A, et al. The expanding role of the hospital epidemiologist in 2014: a survey of the Society for Hospital Epidemiology of America (SHEA) Research Network. Infect Control Hosp Epidemiol. 2015;36:605–8.

    Article  PubMed  Google Scholar 

  2. Doll M, Morgan DJ, Anderson D, Bearman G. Touchless technologies for decontamination in the hospital: a review of hydrogen peroxide and UV devices. Curr Infect Dis Rep. 2015;17(9):498.

    Article  PubMed  Google Scholar 

  3. Fu TY, Gent P, Kumar V. Efficacy, efficiency and safety aspects of hydrogen peroxide vapour and aerosolized hydrogen peroxide room disinfection systems. J Hosp Infect. 2012;80:199–205.

    Article  CAS  PubMed  Google Scholar 

  4. Havill NL, Moore BA, Boyce JM. Comparison of the microbiological efficacy of hydrogen peroxide vapor and ultraviolet light processes for room decontamination. Infect Control Hosp Epidemiol. 2012;33:507–12.

    Article  PubMed  Google Scholar 

  5. Barbut F, Yezli S, Otter JA. Activity in vitro of hydrogen peroxide vapour against Clostridium difficile spores. J Hosp Infect. 2012;80:85–7.

    Article  CAS  PubMed  Google Scholar 

  6. Galvin S, Boyle M, Russell RJ, et al. Evaluation of vaporized hydrogen peroxide, Citrox and pH neutral Ecasol for decontamination of an enclosed area: a pilot study. J Hosp Infect. 2012;80:67–70.

    Article  CAS  PubMed  Google Scholar 

  7. Lemmen S, Scheithauer S, Hafner H, Yezli S, Mohr M, Otter JA. Evaluation of hydrogen peroxide vapor for the inactivation of nosocomial pathogens on porous and nonporous surfaces. Am J Infect Control. 2015;43:82–5.

    Article  CAS  PubMed  Google Scholar 

  8. Steindl G, Fiedler A, Huhulescu S, Wewalka G, Allerberger F. Effect of airborne hydrogen peroxide on spores of Clostridium difficile. Wien Klin Wochenschr. 2015;127(11–12):421–6.

    Article  CAS  PubMed  Google Scholar 

  9. Holmdahl T, Lanbeck P, Wullt M, Walder MH. A head-to-head comparison of hydrogen peroxide vapor and aersol room decontamination systems. Infect Control Hosp Epidemiol. 2011;32(9):831–6.

    Article  CAS  PubMed  Google Scholar 

  10. Otter JA, Yezli S, Perl TM, Barbut F, French GL. The role of 'no-touch' automated room disinfection systems in infection prevention and control. J Hosp Infect. 2013;83:1–13.

    Article  CAS  PubMed  Google Scholar 

  11. Ghantoji SS, Stibich M, Stachowiak J, et al. Non-inferiority of pulsed xenon UV light versus bleach for reducing environmental Clostridium difficile contamination on high-touch surfaces in Clostridium difficile infection isolation rooms. J Med Microbiol. 2015;64:191–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rutala WA, Gergen MF, Weber DJ. Room decontamination with UV radiation. Infect Control Hosp Epidemiol. 2010;31(10):1025–9.

    Article  PubMed  Google Scholar 

  13. Boyce JM, Havill NL, Moore BA. Terminal decontamination of patient rooms using an automated mobile UV light unit. Infect Control Hosp Epidemiol. 2011;32(8):737–42.

    Article  PubMed  Google Scholar 

  14. Nerandzic MM, Cadnum JL, Pultz MJ, Donskey CJ. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis. 2010;10:197-2334-10-197.

    Article  Google Scholar 

  15. Nerandzic MM, Thota P, Sankar CT, et al. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol. 2015;36:192–7.

    Article  PubMed  Google Scholar 

  16. Rutala WA, Gergen MF, Tande BM, Weber DJ. Rapid hospital room decontamination using ultraviolet (UV) light with a nanostructured UV-reflective wall coating. Infect Control Hosp Epidemiol. 2013;34:527–9.

    Article  PubMed  Google Scholar 

  17. Rutala WA, Gergen MF, Tande BM, Weber DJ. Room decontamination using an ultraviolet-C device with short ultraviolet exposure time. Infect Control Hosp Epidemiol. 2014;35:1070–2.

    Article  PubMed  Google Scholar 

  18. Rutala WA, Weber DJ, Gergen MF, Tande BM, Sickbert-Bennett EE. Does coating all room surfaces with an ultraviolet C light-nanoreflective coating improve decontamination compared with coating only the walls? Infect Control Hosp Epidemiol. 2014;35:323–5.

    Article  PubMed  Google Scholar 

  19. Anderson D, Gergen MF, Smathers E, et al. Decontamination of targeted pathogens from patient rooms using an automated ultraviolet-C-emitting device. Infect Control Hosp Epidemiol. 2013;34:466–71.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jinadatha C, Quezada R, Huber TW, Williams JB, Zeber JE, Copeland LA. Evaluation of a pulsed-xenon ultraviolet room disinfection device for impact on contamination levels of methicillin-resistant Staphylococcus aureus. BMC Infect Dis. 2014;14:187-2334-14-187.

    Article  CAS  Google Scholar 

  21. Hosein I, Madeloso R, Nagaratnam W, Villamaria F, Stock E, Jinadatha C. Evaluation of a pulsed xenon ultraviolet light device for isolation room disinfection in a United Kingdom hospital. Am J Infect Control. 2016;44(9):e157–61.

    Article  PubMed  Google Scholar 

  22. Blazejewski C, Wallet F, Rouze A, et al. Efficiency of hydrogen peroxide in improving disinfection of ICU rooms. Crit Care. 2015;19:30.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Alfandari S, Gois J, Delannoy PY, et al. Management and control of a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. Med Mal Infect. 2014;44:229–31.

    Article  CAS  PubMed  Google Scholar 

  24. Ali S, Muzslay M, Bruce M, Jeanes A, Moore G, Wilson AP. Efficacy of two hydrogen peroxide vapour aerial decontamination systems for enhanced disinfection of meticillin-resistant Staphylococcus aureus, Klebsiella pneumoniae and Clostridium difficile in single isolation rooms. J Hosp Infect. 2016;93:70–7.

    Article  CAS  PubMed  Google Scholar 

  25. Mitchell BG, Digney W, Locket P, Dancer SJ. Controlling methicillin-resistant Staphylococcus aureus (MRSA) in a hospital and the role of hydrogen peroxide decontamination: an interrupted time series analysis. BMJ Open. 2014;4:e004522-2013-004522.

    Article  Google Scholar 

  26. Wong T, Woznow T, Petrie M, et al. Postdischarge decontamination of MRSA, VRE, and Clostridium difficile isolation rooms using 2 commercially available automated ultraviolet-C-emitting devices. Am J Infect Control. 2016;44:416–20.

    Article  PubMed  Google Scholar 

  27. Hardy KJ, Gossain S, Henderson N, et al. Rapid recontamination with MRSA of the environment of an intensive care unit after decontamination with hydrogen peroxide vapour. J Hosp Infect. 2007;66:360–8.

    Article  CAS  PubMed  Google Scholar 

  28. Mahida N, Vaughan N, Boswell T. First UK evaluation of an automated ultraviolet-C room decontamination device (Tru-D). J Hosp Infect. 2013;84:332–5.

    Article  CAS  PubMed  Google Scholar 

  29. Beal A, Mahida N, Staniforth K, Vaughan N, Clarke M, Boswell T. First UK trial of Xenex PX-UV, an automated ultraviolet room decontamination device in a clinical haematology and bone marrow transplantation unit. J Hosp Infect. 2016;93(2):164–8.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang A, Nerandzic MM, Kundrapu S, Donskey CJ. Does organic material on hospital surfaces reduce the effectiveness of hypochlorite and UV radiation for disinfection of Clostridium difficile? Infect Control Hosp Epidemiol. 2013;34:1106–8.

    Article  PubMed  Google Scholar 

  31. Cadnum JL, Tomas ME, Sankar T, et al. Effect of variation in test methods on performance of ultraviolet-C radiation room decontamination. Infect Control Hosp Epidemiol. 2016;37:555–60.

    Article  PubMed  Google Scholar 

  32. Manian FA, Griesnauer S, Bryant A. Implementation of hospital-wide enhanced terminal cleaning of targeted patient rooms and its impact on endemic clostridium difficile infection rates. Am J Infect Control. 2013;41(6):537–41.

    Article  PubMed  Google Scholar 

  33. Levin J, Riley LS, Parrish C, English D, Ahn S. The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. Am J Infect Control. 2013;41:746–8.

    Article  PubMed  Google Scholar 

  34. Haas JP, Menz J, Dusza S, Montecalvo MA. Implementation and impact of ultraviolet environmental disinfection in an acute care setting. Am J Infect Control. 2014;42(6):586–90.

    Article  PubMed  Google Scholar 

  35. Passaretti CL, Otter JA, Reich NG, et al. An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis. 2013;56:27–35.

    Article  CAS  PubMed  Google Scholar 

  36. Anderson D, Chen LF, Weber DJ, et al. The benefits of enhanced terminal room (BETR) disinfection study: a cluster randomized, multicenter crossover study with 2x2 factorial design to evaluate the impact of enhanced terminal room disinfection on acquisition and infection caused by multi-drug resistant organisms (MDRO). Oral abstract at: Infectious Diseases Society of America 2015 Annual Conference; October 9, 2015; San Diego, CA.

    Google Scholar 

  37. Anderson DJ, Moehring RW, Weber DJ, Lewis SS, Chen LF, Schwab JC, et al. Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile: a secondary analysis of a multicentre cluster randomised controlled trial with crossover design (BETR Disinfection). Lancet Infect Dis. 2018;18(8):845–53. https://doi.org/10.1016/S1473-3099(18)30278-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagaraja A, Visintainer P, Haas JP, Menz J, Wormser GP, Montecalvo MA. Clostridium difficile infections before and during use of ultraviolet disinfection. Am J Infect Control. 2015;43(9):940–5.

    Article  PubMed  Google Scholar 

  39. Vianna PG, Dale CR Jr, Simmons S, Stibich M, Licitra CM. Impact of pulsed xenon ultraviolet light on hospital-acquired infection rates in a community hospital. Am J Infect Control. 2016;44:299–303.

    Article  CAS  PubMed  Google Scholar 

  40. Horn K, Otter JA. Hydrogen peroxide vapor room disinfection and hand hygiene improvements reduce Clostridium difficile infection, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and extended-spectrum beta-lactamase. Am J Infect Control. 2015;43:1354–6.

    Article  PubMed  Google Scholar 

  41. Napolitano NA, Mahapatra T, Tang W. The effectiveness of UV-C radiation for facility-wide environmental disinfection to reduce health care-acquired infections. Am J Infect Control. 2015;43:1342–6.

    Article  PubMed  Google Scholar 

  42. Miller R, Simmons S, Dale C, Stachowiak J, Stibich M. Utilization and impact of a pulsed-xenon ultraviolet room disinfection system and multidisciplinary care team on Clostridium difficile in a long-term acute care facility. Am J Infect Control. 2015;43:1350–3.

    Article  PubMed  Google Scholar 

  43. Murphy P, Kang L, Fleming M, et al. Effect of ultraviolet-C light disinfection at terminal patient discharge on hospital-acquired infections in bone marrow transplant and oncology units. Am J Infect Control. 2020;48(6):705–7. https://doi.org/10.1016/j.ajic.2019.10.002.

    Article  PubMed  Google Scholar 

  44. Dryden M, Parnaby R, Dailly S, et al. Hydrogen peroxide vapour decontamination in the control of a polyclonal meticillin-resistant Staphylococcus aureus outbreak on a surgical ward. J Hosp Infect. 2008;68:190–2.

    Article  CAS  PubMed  Google Scholar 

  45. French GL, Otter JA, Shannon KP, Adams NM, Watling D, Parks MJ. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J Hosp Infect. 2004;57:31–7.

    Article  CAS  PubMed  Google Scholar 

  46. Ray A, Perez F, Beltramini AM, et al. Use of vaporized hydrogen peroxide decontamination during an outbreak of multidrug-resistant Acinetobacter baumannii infection at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2010;31(12):1236–41.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Best EL, Parnell P, Thirkell G, et al. Effectiveness of deep cleaning followed by hydrogen peroxide decontamination during high Clostridium difficile infection incidence. J Hosp Infect. 2014;87:25–33.

    Article  CAS  PubMed  Google Scholar 

  48. Barbut F, Yezli S, Mimoun M, Pham J, Chaouat M, Otter JA. Reducing the spread of Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an infection control bundle. Burns. 2013;39:395–403.

    Article  PubMed  Google Scholar 

  49. Otter JA, Yezli S, Schouten MA, van Zanten AR, Houmes-Zielman G, Nohlmans-Paulssen MK. Hydrogen peroxide vapor decontamination of an intensive care unit to remove environmental reservoirs of multidrug-resistant gram-negative rods during an outbreak. Am J Infect Control. 2010;38:754–6.

    Article  PubMed  Google Scholar 

  50. Landelle C, Legrand P, Lesprit P, et al. Protracted outbreak of multidrug-resistant Acinetobacter baumannii after intercontinental transfer of colonized patients. Infect Control Hosp Epidemiol. 2013;34:119–24.

    Article  PubMed  Google Scholar 

  51. Chmielarczyk A, Higgins PG, Wojkowska-Mach J, et al. Control of an outbreak of Acinetobacter baumannii infections using vaporized hydrogen peroxide. J Hosp Infect. 2012;81:239–45.

    Article  CAS  PubMed  Google Scholar 

  52. Maclean M, Macgregor SJ, Anderson JG, et al. Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light. J Hosp Infect. 2010;76:247–51.

    Article  CAS  PubMed  Google Scholar 

  53. Bache SE, Maclean M, MacGregor SJ, et al. Clinical studies of the High-Intensity Narrow-Spectrum light Environmental Decontamination System (HINS-light EDS), for continuous disinfection in the burn unit inpatient and outpatient settings. Burns. 2012;38:69–76.

    Article  PubMed  Google Scholar 

  54. Maclean M, McKenzie K, Anderson JG, Gettinby G, MacGregor SJ. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J Hosp Infect. 2014;88:1–11.

    Article  CAS  PubMed  Google Scholar 

  55. Curtis GL, Faour M, Jawad M, Klika AK, Barsoum WK, Higuera CA. Reduction of particles in the operating room using ultraviolet air disinfection and recirculation units. J Arthroplast. 2018;33(7):S196–200. https://doi.org/10.1016/j.arth.2017.11.052.

    Article  Google Scholar 

  56. Anis HK, Curtis GL, Klika AK, et al. In-room ultraviolet air filtration units reduce airborne particles during total joint arthroplasty. J Orthop Res. 2020;38(2):431–7. https://doi.org/10.1002/jor.24453.

    Article  PubMed  Google Scholar 

  57. Andersen BM, Rasch M, Hochlin K, Jensen FH, Wismar P, Fredriksen JE. Decontamination of rooms, medical equipment and ambulances using an aerosol of hydrogen peroxide disinfectant. J Hosp Infect. 2006;62:149–55.

    Article  CAS  PubMed  Google Scholar 

  58. Otter JA, Nowakowski E, Salkeld JA, et al. Saving costs through the decontamination of the packaging of unused medical supplies using hydrogen peroxide vapor. Infect Control Hosp Epidemiol. 2013;34:472–8.

    Article  PubMed  Google Scholar 

  59. Moore G, Ali S, Cloutman-Green EA, et al. Use of UV-C radiation to disinfect non-critical patient care items: a laboratory assessment of the Nanoclave Cabinet. BMC Infect Dis. 2012;12:174.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kaiki Y, Kitagawa H, Hara T, et al. Methicillin-resistant Staphylococcus aureus contamination of hospital-use-only mobile phones and efficacy of 222-nm ultraviolet disinfection. Am J Infect Control. 2020;000:11–4. https://doi.org/10.1016/j.ajic.2020.11.011.

    Article  Google Scholar 

  61. Umezawa K, Asai S, Inokuchi S, Miyachi H. A comparative study of the bactericidal activity and daily disinfection housekeeping surfaces by a new portable pulsed UV radiation device. Curr Microbiol. 2012;64:581–7.

    Article  CAS  PubMed  Google Scholar 

  62. Paul D, Gupta A, Maurya AK. Exploring options for reprocessing of N95 Filtering Facepiece Respirators (N95-FFRs) amidst COVID-19 pandemic: a systematic review. PLoS One. 2020;15(11 November):1–24. https://doi.org/10.1371/journal.pone.0242474.

    Article  CAS  Google Scholar 

  63. Cadnum JL, Li DF, Redmond SN, John AR, Pearlmutter B, Donskey CJ. Effectiveness of ultraviolet-c light and a high-level disinfection cabinet for decontamination of n95 respirators. Pathog Immun. 2020;5(1):52–67. https://doi.org/10.20411/pai.v5i1.372.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fleming M, Patrick A, Gryskevicz M, Masroor N, Hassmer L, Shimp K, Cooper K, Doll M, Stevens M, Bearman G. Deployment of a touchless ultraviolet light robot for terminal room disinfection: the importance of audit and feedback. Am J Infect Control. 2018;46(2):241–3. https://doi.org/10.1016/j.ajic.2017.09.027.

    Article  PubMed  Google Scholar 

  65. Weber DJ, Rutala WA. Self-disinfecting surfaces. Infect Control Hosp Epidemiol. 2012;33(1):10–3.

    Article  PubMed  Google Scholar 

  66. Casey AL, Adams D, Karpanen TJ, et al. Role of copper in reducing hospital environment contamination. J Hosp Infect. 2010;74:72–7.

    Article  CAS  PubMed  Google Scholar 

  67. Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH. Survival of bacteria on metallic copper surfaces in a hospital trial. Appl Microbiol Biotechnol. 2010;87:1875–9.

    Article  CAS  PubMed  Google Scholar 

  68. Marais F, Mehtar S, Chalkley L. Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J Hosp Infect. 2010;74:80–95.

    Article  CAS  PubMed  Google Scholar 

  69. Karpanen TJ, Casey AL, Lambert PA, et al. The antimicrobial efficacy of copper alloy furnishing in the clinical environment: a crossover study. Infect Control Hosp Epidemiol. 2012;33:3–9.

    Article  CAS  PubMed  Google Scholar 

  70. Schmidt MG, Attaway HH, Sharpe PA, et al. Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. J Clin Microbiol. 2012;50:2217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Rivero P, Brenner P, Nercelles P. Impact of copper in the reduction of hospital-acquired infections, mortality and antimicrobial costs in the Adult Intensive Care Unit. Rev Chil Infectol. 2014;31:274–9.

    Article  Google Scholar 

  72. Salgado CD, Sepkowitz KA, John JF, et al. Copper surfaces reduce the rate of healthcare-acquired infections in the intensive care unit. Infect Control Hosp Epidemiol. 2013;34:479–86.

    Article  PubMed  Google Scholar 

  73. Sifri CD, Burke GH, Enfield KB. Reduced health care-associated infections in an acute care community hospital using a combination of self-disinfecting copper-impregnated composite hard surfaces and linens. Am J Infect Control. 2016;44(12):1565–71. https://doi.org/10.1016/j.ajic.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  74. Irene G, Georgios P, Ioannis C, et al. Copper-coated textiles: armor against MDR nosocomial pathogens. Diagn Microbiol Infect Dis. 2016;85:205–9.

    Article  CAS  PubMed  Google Scholar 

  75. Kotsanas D, Wijesooriya WR, Sloane T, Stuart RL, Gillespie EE. The silver lining of disposable sporicidal privacy curtains in an intensive care unit. Am J Infect Control. 2014;42:366–70.

    Article  PubMed  Google Scholar 

  76. Schweizer M, Graham M, Ohl M, Heilmann K, Boyken L, Diekema D. Novel hospital curtains with antimicrobial properties: a randomized, controlled trial. Infect Control Hosp Epidemiol. 2012;33:1081–5.

    Article  PubMed  Google Scholar 

  77. Burden M, Keniston A, Frank MG, et al. Bacterial contamination of healthcare workers' uniforms: a randomized controlled trial of antimicrobial scrubs. J Hosp Med. 2013;8:380–5.

    Article  PubMed  Google Scholar 

  78. Boutin MA, Thom KA, Zhan M, Johnson JK. A randomized crossover trial to decrease bacterial contamination on hospital scrubs. Infect Control Hosp Epidemiol. 2014;35:1411–3.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bearman GM, Rosato A, Elam K, et al. A crossover trial of antimicrobial scrubs to reduce methicillin-resistant Staphylococcus aureus burden on healthcare worker apparel. Infect Control Hosp Epidemiol. 2012;33:268–75.

    Article  PubMed  Google Scholar 

  80. Freeman AI, Halladay LJ, Cripps P. The effect of silver impregnation of surgical scrub suits on surface bacterial contamination. Vet J. 2012;192:489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Anderson DJ, Addison R, Lokhnygina Y, et al. The antimicrobial scrub contamination and transmission (ASCOT) trial: a three-arm, blinded, randomized controlled trial with crossover design to determine the efficacy of antimicrobial-impregnated scrubs in preventing healthcare provider contamination. Infect Control Hosp Epidemiol. 2017;38(10):1147–54. https://doi.org/10.1017/ice.2017.181.

    Article  PubMed  Google Scholar 

  82. Marcus EL, Yosef H, Borkow G, Caine Y, Sasson A, Moses AE. Reduction of health care–associated infection indicators by copper oxide–impregnated textiles: crossover, double-blind controlled study in chronic ventilator-dependent patients. Am J Infect Control. 2017;45(4):401–3. https://doi.org/10.1016/j.ajic.2016.11.022.

    Article  CAS  PubMed  Google Scholar 

  83. Butler JP. Effect of copper-impregnated composite bed linens and patient gowns on healthcare-associated infection rates in six hospitals. J Hosp Infect. 2018;100(3):e130–4. https://doi.org/10.1016/j.jhin.2018.05.013.

    Article  CAS  PubMed  Google Scholar 

  84. Schmidt MG, Tuuri RE, Dharsee A, et al. Antimicrobial copper alloys decreased bacteria on stethoscope surfaces. Am J Infect Control. 2017;45(6):642–7. https://doi.org/10.1016/j.ajic.2017.01.030.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Doll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doll, M., Stevens, M.P., Bearman, G. (2022). New Technologies for Infection Prevention. In: Bearman, G., Morgan, D.J., K. Murthy, R., Hota, S. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-030-98427-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98427-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98426-7

  • Online ISBN: 978-3-030-98427-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics