Skip to main content

Contamination in the Operating Room Environment: Patients, Providers, Surfaces, and Air

  • Chapter
  • First Online:
Infection Prevention
  • 1019 Accesses

Abstract

This chapter discusses contamination in the operating room environment. It is a common misconception that the operating room, including the anesthesia work area, is entirely sterile. The evidence for pathogen transmission in the operating room is growing and implicates multiple sources of contamination including patients, providers, surfaces, and air. We discuss infection prevention measures that have been shown to prevent pathogen transmission in the operating room. Infection prevention measures should protect healthcare workers as well as patients. The interactions among pathogen transmission in the operating room, infection prevention measures, and healthcare-associated infections need further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Occupational Safety and Health Administration recommendations can be found at https://www.osha.gov/laser-electrosurgery-plume. National Institute of Occupational Safety and Health recommendations can be found at https://www.cdc.gov/niosh/topics/healthcarehsps/smoke.html. Association of periOperative Registered Nurses recommendations are limited to members only.

References

  1. Centers for Disease Control and Prevention. Data Summary of HAIs in the US: Assessing Progress 2006–2016. Available at https://www.cdc.gov/hai/data/archive/data-summary-assessing-progress.html.

  2. Centers for Disease Control and Prevention. Public health focus: surveillance, prevention, and control of nosocomial infections. MMWR Morb Mortal Wkly Rep. 1992;41(42):783–7.

    Google Scholar 

  3. Mangram AJ, Horan TC, Pearson ML, et al. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 1999;27(2):97–132.

    Article  CAS  PubMed  Google Scholar 

  4. Berríos-Torres SI, Umscheid CA, Bratzler DW, et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017;152(8):784–91.

    Article  PubMed  Google Scholar 

  5. Munoz-Price LS, Birnbach DJ, Lubarsky DA, et al. Decreasing operating room environmental pathogen contamination through improved cleaning practice. Infect Control Hosp Epidemiol. 2012;33(9):897–904.

    Article  PubMed  Google Scholar 

  6. Dholakia S, Jeans JP, Khalid U, et al. The association of noise and surgical-site infection in day-case hernia repairs. Surgery. 2015;157(6):1153–6.

    Article  PubMed  Google Scholar 

  7. Kurmann A, Peter M, Tschan F, et al. Adverse effect of noise in the operating theatre on surgical-site infection. Br J Surg. 2011;98(7):1021–5.

    Article  CAS  PubMed  Google Scholar 

  8. Munoz-Price LS, Weinstein RA. Fecal patina in the anesthesia work area. Anesth Analg. 2015;120(4):703–5.

    Article  PubMed  Google Scholar 

  9. Fernstrom A, Goldblatt M. Aerobiology and its role in the transmission of infectious diseases. J Pathog. 2013;2013:1–13.

    Article  Google Scholar 

  10. Loftus RW, Koff MD, Birnbach DJ. The dynamics and implications of bacterial transmission events arising from the anesthesia work area. Anesth Analg. 2015;120(4):853–60.

    Article  PubMed  Google Scholar 

  11. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. Available at https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.

  12. Noskin GA, Stosor V, Cooper I, et al. Recovery of vancomycin-resistant enterococci on fingertips and environmental surfaces. Infect Control Hosp Epidemiol. 1995;16(10):577–81.

    Article  CAS  PubMed  Google Scholar 

  13. Shams AM, Rose LJ, Edwards JR, et al. Assessment of the overall and multidrug-resistant organism bioburden on environmental surfaces in healthcare facilities. Infect Control Hosp Epidemiol. 2016;37(12):1426–32.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Knelson LP, Williams DA, Gergen MF, et al. A comparison of environmental contamination by patients infected or colonized with methicillin-resistant staphylococcus aureus or vancomycin-resistant enterococci: a multicenter study. Infect Control Hosp Epidemiol. 2014;35(7):872–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hota B, Blom DW, Lyle EA, et al. Interventional evaluation of environmental contamination by vancomycin-resistant enterococci: failure of personnel, product, or procedure. J Hosp Infect. 2009;71(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  16. Bonten MJ, Hayden MK, Nathan C, et al. Epidemiology of colonisation of patients and environment with vancomycin-resistant enterococci. Lancet. 1996;348(9042):1615–9.

    Article  CAS  PubMed  Google Scholar 

  17. Drees M, Snydman DR, Schmid CH, et al. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin Infect Dis. 2008;46(5):678–85.

    Article  CAS  PubMed  Google Scholar 

  18. Huang SS, Datta R, Platt R. Risk of acquiring antibiotic-resistant bacteria from prior room occupants. Arch Intern Med. 2006;166(18):1945–51.

    Article  PubMed  Google Scholar 

  19. Hayden MK, Blom DW, Lyle EA, et al. Risk of hand or glove contamination after contact with patients colonized with vancomycin-resistant enterococcus or the colonized patients’ environment. Infect Control Hosp Epidemiol. 2008;29(2):149–54.

    Article  PubMed  Google Scholar 

  20. Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–81.

    Article  CAS  PubMed  Google Scholar 

  21. Morgan DJ, Rogawski E, Thom KA, et al. Transfer of multidrug-resistant bacteria to healthcare workers’ gloves and gowns after patient contact increases with environmental contamination. Crit Care Med. 2012;40(4):1045–51.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nutman A, Lerner A, Schwartz D, et al. Evaluation of carriage and environmental contamination by carbapenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2016;22(11):949.e5–7.

    Article  CAS  Google Scholar 

  23. Rosa R, Arheart KL, Depascale D, et al. Environmental exposure to carbapenem-resistant Acinetobacter baumannii as a risk factor for patient acquisition of A. baumannii. Infect Control Hosp Epidemiol. 2014;35(4):430–3.

    Article  PubMed  Google Scholar 

  24. Kluytmans JA, Mouton JW, Ijzerman EP, et al. Nasal carriage of Staphylococcus aureus as a major risk factor for wound infections after cardiac surgery. J Infect Dis. 1995;171(1):216–9.

    Article  CAS  PubMed  Google Scholar 

  25. Wertheim HF, Vos MC, Ott A, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet. 2004;364(9435):703–5.

    Article  PubMed  Google Scholar 

  26. von Eiff C, Becker K, Machka K, et al. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med. 2001;344(1):11–6.

    Article  Google Scholar 

  27. Franklin S. A safer, less costly SSI prevention protocol-universal versus targeted preoperative decolonization. Am J Infect Control. 2020;48(12):1501–3.

    Article  PubMed  Google Scholar 

  28. Septimus EJ, Schweizer ML. Decolonization in prevention of health care-associated infections. Clin Microbiol Rev. 2016;29(2):201–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bode LG, Kluytmans JA, Wertheim HF, et al. Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med. 2010;362(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  30. Schweizer ML, Chiang HY, Septimus E, et al. Association of a bundled intervention with surgical site infections among patients undergoing cardiac, hip, or knee surgery. JAMA. 2015;313(21):2162–71.

    Article  CAS  PubMed  Google Scholar 

  31. Global Guidelines for the Prevention of Surgical Site Infection. Geneva: World Health Organization; 2016. Appendix 3, Summary of the systematic review on decolonization with or without chlorhexidine gluconate body wash for the prevention of Staphylococcus aureus infection in nasal carriers undergoing surgery. Available at https://www.ncbi.nlm.nih.gov/books/NBK401152/.

  32. Phillips M, Rosenberg A, Shopsin B, et al. Preventing surgical site infections: a randomized, open-label trial of nasal mupirocin ointment and nasal povidone-iodine solution. Infect Control Hosp Epidemiol. 2014;35(7):826–32.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Long DR, Bryson-Cahn C, Pergamit R, et al. 2021 young investigator award winner: anatomic gradients in the microbiology of spinal fusion surgical site infection and resistance to surgical antimicrobial prophylaxis. Spine (Phila Pa 1976). 2021;46(3):143–51.

    Article  Google Scholar 

  34. Loftus RW, Muffly MK, Brown JR, et al. Hand contamination of anesthesia providers is an important risk factor for intraoperative bacterial transmission. Anesth Analg. 2011;112(1):98–105.

    Article  PubMed  Google Scholar 

  35. Krediet AC, Kalkman CJ, Bonten MJ, et al. Hand-hygiene practices in the operating theatre: an observational study. Br J Anaesth. 2011;107(4):553–8.

    Article  CAS  PubMed  Google Scholar 

  36. Munoz-Price LS, Lubarsky DA, Arheart KL, et al. Interactions between anesthesiologists and the environment while providing anesthesia care in the operating room. Am J Infect Control. 2013;41(10):922–4.

    Article  PubMed  Google Scholar 

  37. Munoz-Price LS, Riley B, Banks S, et al. Frequency of interactions and hand disinfections among anesthesiologists while providing anesthesia care in the operating room: induction versus maintenance. Infect Control Hosp Epidemiol. 2014;35(8):1056–9.

    Article  PubMed  Google Scholar 

  38. Biddle C, Shah J. Quantification of anesthesia providers’ hand hygiene in a busy metropolitan operating room: what would Semmelweis think. Am J Infect Control. 2012;40(8):756–9.

    Article  PubMed  Google Scholar 

  39. Munoz-Price LS, Patel Z, Banks S, et al. Randomized crossover study evaluating the effect of a hand sanitizer dispenser on the frequency of hand hygiene among anesthesiology staff in the operating room. Infect Control Hosp Epidemiol. 2014;35(6):717–20.

    Article  PubMed  Google Scholar 

  40. Loftus RW, Dexter F, Goodheart MJ, et al. The effect of improving basic preventive measures in the perioperative arena on Staphylococcus aureus transmission and surgical site infections. JAMA Netw Open. 2020;3(3):e201934.

    Article  PubMed  Google Scholar 

  41. Rodriguez-Aldrete D, Sivanesan E, Banks S, et al. Recurrent visual electronic hand hygiene reminders in the anesthesia work area. Infect Control Hosp Epidemiol. 2016;37(7):872–4.

    Article  PubMed  Google Scholar 

  42. Koff MD, Loftus RW, Burchman CC, et al. Reduction in intraoperative bacterial contamination of peripheral intravenous tubing through the use of a novel device. Anesthesiology. 2009;110(5):978–85.

    Article  PubMed  Google Scholar 

  43. Koff MD, Brown JR, Marshall EJ, et al. Frequency of hand decontamination of intraoperative providers and reduction of postoperative healthcare-associated infections: a randomized clinical trial of a novel hand hygiene system. Infect Control Hosp Epidemiol. 2016;37(8):888–95.

    Article  PubMed  Google Scholar 

  44. Koff MD, Corwin HL, Beach ML, et al. Reduction in ventilator associated pneumonia in a mixed intensive care unit after initiation of a novel hand hygiene program. J Crit Care. 2011;26(5):489–95.

    Article  PubMed  Google Scholar 

  45. Munoz-Price LS, Bowdle A, Johnston BL, et al. Infection prevention in the operating room anesthesia work area. Infect Control Hosp Epidemiol. 2018:1–17.

    Google Scholar 

  46. Bowdle A, Jelacic S, Shishido S, et al. Infection prevention precautions for routine anesthesia care during the SARS-CoV-2 pandemic. Anesth Analg. 2020;131(5):1342–54.

    Article  CAS  PubMed  Google Scholar 

  47. Centers for Disease Control and Prevention. Perspectives in Disease Prevention and Health Promotion Update: Universal Precautions for Prevention of Transmission of Human Immunodeficiency Virus, Hepatitis B Virus, and Other Bloodborne Pathogens in Health-Care Settings. MMWR Morb Mortal Wkly Rep. 1988;37(24):377–88.

    Google Scholar 

  48. Centers for Disease Control and Prevention. Standard Precautions for All Patient Care. Available at https://www.cdc.gov/infectioncontrol/basics/standard-precautions.html.

  49. Kristensen MS, Sloth E, Jensen TK. Relationship between anesthetic procedure and contact of anesthesia personnel with patient body fluids. Anesthesiology. 1990;73(4):619–24.

    Article  CAS  PubMed  Google Scholar 

  50. Harrison CA, Rogers DW, Rosen M. Blood contamination of anaesthetic and related staff. Anaesthesia. 1990;45(10):831–3.

    Article  CAS  PubMed  Google Scholar 

  51. Tait AR, Tuttle DB. Preventing perioperative transmission of infection: a survey of anesthesiology practice. Anesth Analg. 1995;80(4):764–9.

    CAS  PubMed  Google Scholar 

  52. Ryan AJ, Webster CS, Merry AF, et al. A national survey of infection control practice by New Zealand anaesthetists. Anaesth Intensive Care. 2006;34(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  53. El Mikatti N, Dillon P, Healy TEJ. Hygienic practices of consultant anaesthetists: a survey in the North-West region of the UK. Anaesthesia. 1999;54(1):13–8.

    Article  PubMed  Google Scholar 

  54. Centers for Disease Control and Prevention. Update: human immunodeficiency virus infections in health-care workers exposed to blood of infected patients. MMWR Morb Mortal Wkly Rep. 1987;36(19):285–9.

    Google Scholar 

  55. Chang NN, Kates AE, Ward MA, et al. Association between universal gloving and healthcare-associated infections: a systematic literature review and meta-analysis. Infect Control Hosp Epidemiol. 2019;40(7):755–60.

    Article  PubMed  Google Scholar 

  56. Harris AD, Pineles L, Belton B, et al. Universal glove and gown use and acquisition of antibiotic-resistant bacteria in the ICU: a randomized trial. JAMA. 2013;310(15):1571–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Birnbach DJ, Rosen LF, Fitzpatrick M, et al. A new approach to pathogen containment in the operating room: sheathing the laryngoscope after intubation. Anesth Analg. 2015;121(5):1209–14.

    Article  PubMed  Google Scholar 

  58. Birnbach DJ, Rosen LF, Fitzpatrick M, et al. Double gloves: a randomized trial to evaluate a simple strategy to reduce contamination in the operating room. Anesth Analg. 2015;120(4):848–52.

    Article  PubMed  Google Scholar 

  59. Kampf G, Lemmen S. Disinfection of gloved hands for multiple activities with indicated glove use on the same patient. J Hosp Infect. 2017;97(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  60. Birnbach DJ, Thiesen TC, McKenty NT, et al. Targeted use of alcohol-based hand rub on gloves during task dense periods: one step closer to pathogen containment by anesthesia providers in the operating room. Anesth Analg. 2019;129(6):1557–60.

    Article  PubMed  Google Scholar 

  61. Birnbach DJ, McKenty NT, Rosen LF, et al. Does adherence to World Health Organization hand hygiene protocols in the operating room have the potential to produce irritant contact dermatitis in anesthesia providers. Anesth Analg. 2019;129(6):e182–4.

    Article  PubMed  Google Scholar 

  62. Loftus RW, Koff MD, Burchman CC, et al. Transmission of pathogenic bacterial organisms in the anesthesia work area. Anesthesiology. 2008;109(3):399–407.

    Article  PubMed  Google Scholar 

  63. Loftus RW, Brown JR, Koff MD, et al. Multiple reservoirs contribute to intraoperative bacterial transmission. Anesth Analg. 2012;114(6):1236–48.

    Article  PubMed  Google Scholar 

  64. Loftus RW, Koff MD, Brown JR, et al. The dynamics of Enterococcus transmission from bacterial reservoirs commonly encountered by anesthesia providers. Anesth Analg. 2015;120(4):827–36.

    Article  CAS  PubMed  Google Scholar 

  65. Loftus RW, Koff MD, Brown JR, et al. The epidemiology of Staphylococcus aureus transmission in the anesthesia work area. Anesth Analg. 2015;120(4):807–18.

    Article  PubMed  Google Scholar 

  66. Loftus RW, Brown JR, Patel HM, et al. Transmission dynamics of gram-negative bacterial pathogens in the anesthesia work area. Anesth Analg. 2015;120(4):819–26.

    Article  PubMed  Google Scholar 

  67. Hambraeus A, Malmborg AS. The influence of different footwear on floor contamination. Scand J Infect Dis. 1979;11(3):243–6.

    Article  CAS  PubMed  Google Scholar 

  68. Carling PC, Parry MF, Von Beheren SM, et al. Identifying opportunities to enhance environmental cleaning in 23 acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  69. Amodio E, Dino C. Use of ATP bioluminescence for assessing the cleanliness of hospital surfaces: a review of the published literature (1990–2012). J Infect Public Health. 2014;7(2):92–8.

    Article  PubMed  Google Scholar 

  70. Han JH, Sullivan N, Leas BF, et al. Cleaning hospital room surfaces to prevent health care-associated infections: a technical brief. Ann Intern Med. 2015;163(8):598–607.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mai TL, Ming Z, Nguyen V, et al. Microbiologique microfilm™ EBEc – a rapid method for the simultaneous enumeration of Enterobacteriaceae and Escherichia coli. J AOAC Int. 2020;103(5):1348–60.

    Article  PubMed  Google Scholar 

  72. Robinson ADM, Dexter F, Renkor V, et al. Operating room PathTrac analysis of current intraoperative Staphylococcus aureus transmission dynamics. Am J Infect Control. 2019;47(10):1240–7.

    Article  PubMed  Google Scholar 

  73. Armstrong BA, Gordon L, Grantcharov TP, et al. The importance of feedback for surgical teams during the COVID-19 pandemic. Br J Surg. 2020;107(10):e410–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rowlands J, Yeager MP, Beach M, et al. Video observation to map hand contact and bacterial transmission in operating rooms. Am J Infect Control. 2014;42(7):698–701.

    Article  PubMed  Google Scholar 

  75. Hogan BV, Peter MB, Shenoy HG, et al. Surgery induced immunosuppression. Surgeon. 2011;9(1):38–43.

    Article  PubMed  Google Scholar 

  76. Jefferson J, Whelan R, Dick B, et al. A novel technique for identifying opportunities to improve environmental hygiene in the operating room. AORN J. 2011;93(3):358–64.

    Article  PubMed  Google Scholar 

  77. Schmidt E, Dexter F, Herrmann J, et al. Assessment of anesthesia machine redesign on cleaning of the anesthesia machine using surface disinfection wipes. Am J Infect Control. 2020;48(6):675–81.

    Article  PubMed  Google Scholar 

  78. Biddle CJ, George-Gay B, Prasanna P, et al. Assessing a novel method to reduce anesthesia machine contamination: a prospective, observational trial. Can J Infect Dis Med Microbiol. 2018;2018:1905360.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bowdle A, Munoz-Price LS. Preventing infection of patients and healthcare workers should be the new normal in the era of novel coronavirus epidemics. Anesthesiology. 2020;132(6):1292–5.

    Article  CAS  PubMed  Google Scholar 

  80. Negri de Sousa AC, Vilas Boas VA, Levy CE, et al. Laryngoscopes: evaluation of microbial load of blades. Am J Infect Control. 2016;44(3):294–8.

    Article  PubMed  Google Scholar 

  81. Jones BL, Gorman LJ, Simpson J, et al. An outbreak of Serratia marcescens in two neonatal intensive care units. J Hosp Infect. 2000;46(4):314–9.

    Article  CAS  PubMed  Google Scholar 

  82. Williams D, Dingley J, Jones C, et al. Contamination of laryngoscope handles. J Hosp Infect. 2010;74(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  83. Call TR, Auerbach FJ, Riddell SW, et al. Nosocomial contamination of laryngoscope handles: challenging current guidelines. Anesth Analg. 2009;109(2):479–83.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wax RS, Christian MD. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Can J Anaesth. 2020;67(5):568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Martin LD, Rampersad SE, Geiduschek JM, et al. Modification of anesthesia practice reduces catheter-associated bloodstream infections: a quality improvement initiative. Paediatr Anaesth. 2013;23(7):588–96.

    Article  PubMed  Google Scholar 

  86. Mermel LA, Bert A, Chapin KC, et al. Intraoperative stopcock and manifold colonization of newly inserted peripheral intravenous catheters. Infect Control Hosp Epidemiol. 2014;35(9):1187–9.

    Article  CAS  PubMed  Google Scholar 

  87. Holroyd JL, Paulus DA, Rand KH, et al. Universal intravenous access cleaning device fails to sterilize stopcocks. Anesth Analg. 2014;118(2):333–43.

    Article  CAS  PubMed  Google Scholar 

  88. Loftus RW, Patel HM, Huysman BC, et al. Prevention of intravenous bacterial injection from health care provider hands: the importance of catheter design and handling. Anesth Analg. 2012;115(5):1109–19.

    Article  PubMed  Google Scholar 

  89. Loftus RW, Brindeiro BS, Kispert DP, et al. Reduction in intraoperative bacterial contamination of peripheral intravenous tubing through the use of a passive catheter care system. Anesth Analg. 2012;115(6):1315–23.

    Article  PubMed  Google Scholar 

  90. Muffly MK, Beach ML, Isaac Tong YC, et al. Stopcock lumen contamination does not reflect the full burden of bacterial intravenous tubing contamination: analysis using a novel injection port. Am J Infect Control. 2010;38(9):734–9.

    Article  PubMed  Google Scholar 

  91. Wax DB, Shah A, Shah R, et al. Efficacy and usability of a novel barrier device for preventing injection port contamination: a pilot simulation study. Anesth Analg. 2020;130(3):e45–8.

    Article  PubMed  Google Scholar 

  92. Gargiulo DA, Mitchell SJ, Sheridan J, et al. Microbiological contamination of drugs during their administration for anesthesia in the operating room. Anesthesiology. 2016;124(4):785–94.

    Article  CAS  PubMed  Google Scholar 

  93. Mermel LA. Short-term peripheral venous catheter-related bloodstream infections: a systematic review. Clin Infect Dis. 2017;65(10):1757–62.

    Article  PubMed  Google Scholar 

  94. Choudhury MA, Sidjabat HE, Zowawi HM, et al. Skin colonization at peripheral intravenous catheter insertion sites increases the risk of catheter colonization and infection. Am J Infect Control. 2019;47(12):1484–8.

    Article  PubMed  Google Scholar 

  95. Stuart RL, Cameron DR, Scott C, et al. Peripheral intravenous catheter-associated Staphylococcus aureus bacteraemia: more than 5 years of prospective data from two tertiary health services. Med J Aust. 2013;198(10):551–3.

    Article  PubMed  Google Scholar 

  96. Saliba P, Hornero A, Cuervo G, et al. Interventions to decrease short-term peripheral venous catheter-related bloodstream infections: impact on incidence and mortality. J Hosp Infect. 2018;100(3):e178–86.

    Article  CAS  PubMed  Google Scholar 

  97. O’Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular catheter-related infections. Clin Infect Dis. 2011;52(9):e162–93.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kaul DR, Valesano AL, Petrie JG, et al. Donor to recipient transmission of SARS-CoV-2 by lung transplantation despite negative donor upper respiratory tract testing. Am J Transplant. 2021;21(8):2885–9.

    Article  CAS  PubMed  Google Scholar 

  99. Alizo G, Onayemi A, Sciarretta JD, et al. Operating room foot traffic: a risk factor for surgical site infections. Surg Infect. 2019;20(2):146–50.

    Article  Google Scholar 

  100. Hambraeus A, Bengtsson S, Laurell G. Bacterial contamination in a modern operating suite. 3. Importance of floor contamination as a source of airborne bacteria. J Hyg (Lond). 1978;80(2):169–74.

    Article  CAS  Google Scholar 

  101. Kundsin RB. Documentation of airborne infection during surgery. Ann N Y Acad Sci. 1980;353:255–61.

    Article  CAS  PubMed  Google Scholar 

  102. Stauning MT, Bediako-Bowan A, Andersen LP, et al. Traffic flow and microbial air contamination in operating rooms at a major teaching hospital in Ghana. J Hosp Infect. 2018;99(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  103. Drake CT, Goldman E, Nichols RL, et al. Environmental air and airborne infections. Ann Surg. 1977;185(2):219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lidwell OM, Lowbury EJ, Whyte W, et al. Effect of ultraclean air in operating rooms on deep sepsis in the joint after total hip or knee replacement: a randomised study. Br Med J (Clin Res Ed). 1982;285(6334):10–4.

    Article  CAS  Google Scholar 

  105. Lidwell OM, Lowbury EJ, Whyte W, et al. Airborne contamination of wounds in joint replacement operations: the relationship to sepsis rates. J Hosp Infect. 1983;4(2):111–31.

    Article  CAS  PubMed  Google Scholar 

  106. Whyte W, Hodgson R, Tinkler J. The importance of airborne bacterial contamination of wounds. J Hosp Infect. 1982;3(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  107. Barrett WL, Garber SM. Surgical smoke: a review of the literature. Is this just a lot of hot air. Surg Endosc. 2003;17(6):979–87.

    Article  CAS  PubMed  Google Scholar 

  108. Mowbray N, Ansell J, Warren N, et al. Is surgical smoke harmful to theater staff? A systematic review. Surg Endosc. 2013;27(9):3100–7.

    Article  PubMed  Google Scholar 

  109. Sawchuk WS, Weber PJ, Lowy DR, et al. Infectious papillomavirus in the vapor of warts treated with carbon dioxide laser or electrocoagulation: detection and protection. J Am Acad Dermatol. 1989;21(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  110. Capizzi PJ, Clay RP, Battey MJ. Microbiologic activity in laser resurfacing plume and debris. Lasers Surg Med. 1998;23(3):172–4.

    Article  CAS  PubMed  Google Scholar 

  111. Kwak HD, Kim SH, Seo YS, et al. Detecting hepatitis B virus in surgical smoke emitted during laparoscopic surgery. Occup Environ Med. 2016;73(12):857–63.

    PubMed  Google Scholar 

  112. Tran K, Cimon K, Severn M, et al. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7(4):e35797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Judson SD, Munster VJ. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses. 2019;11(10):940.

    Article  PubMed Central  Google Scholar 

  114. El-Boghdadly K, Wong DJN, Owen R, et al. Risks to healthcare workers following tracheal intubation of patients with COVID-19: a prospective international multicentre cohort study. Anaesthesia. 2020;75(11):1437–47.

    Article  CAS  PubMed  Google Scholar 

  115. Tellier R, Li Y, Cowling BJ, et al. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis. 2019;19(1):101.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gralton J, Tovey E, McLaws ML, et al. The role of particle size in aerosolised pathogen transmission: a review. J Infect. 2011;62(1):1–13.

    Article  PubMed  Google Scholar 

  117. Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. Lancet Respir Med. 2020;8(9):914–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bowdle A, Jelacic S, Togashi K, et al. “Test and standard precautions”-is it enough to protect us from false-negative severe acute respiratory syndrome coronavirus 2 test results. Anesth Analg. 2021;132(3):616–21.

    Article  CAS  PubMed  Google Scholar 

  119. Weiss MM, Weiss PD, Weiss DE, et al. Disrupting the transmission of influenza a: face masks and ultraviolet light as control measures. Am J Public Health. 2007;97 Suppl 1:S32–7.

    Article  PubMed  Google Scholar 

  120. Bree K, Barnhill S, Rundell W. The dangers of electrosurgical smoke to operating room personnel: a review. Workplace Health Saf. 2017;65(11):517–26.

    Article  PubMed  Google Scholar 

  121. Sehulster L, Chinn RY, CDC, et al. Guidelines for environmental infection control in health-care facilities. Recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC). MMWR Recomm Rep. 2003;52(RR-10):1–42.

    PubMed  Google Scholar 

  122. Jensen PA, Lambert LA, Iademarco MF, et al. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care settings, 2005. MMWR Recomm Rep. 2005;54(RR-17):1–141.

    PubMed  Google Scholar 

  123. Olmsted RN. Pilot study of directional airflow and containment of airborne particles in the size of Mycobacterium tuberculosis in an operating room. Am J Infect Control. 2008;36(4):260–7.

    Article  PubMed  Google Scholar 

  124. Chow TT, Kwan A, Lin Z, et al. Conversion of operating theatre from positive to negative pressure environment. J Hosp Infect. 2006;64(4):371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Park J, Yoo SY, Ko JH, et al. Infection prevention measures for surgical procedures during a middle east respiratory syndrome outbreak in a Tertiary Care Hospital in South Korea. Sci Rep. 2020;10(1):325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Arora V, Evans C, Langdale L, et al. You need a plan: a stepwise protocol for operating room preparedness during an infectious pandemic. Fed Pract. 2020;37(5):212–8.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srdjan Jelacic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jelacic, S., Bowdle, A. (2022). Contamination in the Operating Room Environment: Patients, Providers, Surfaces, and Air. In: Bearman, G., Morgan, D.J., K. Murthy, R., Hota, S. (eds) Infection Prevention. Springer, Cham. https://doi.org/10.1007/978-3-030-98427-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98427-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98426-7

  • Online ISBN: 978-3-030-98427-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics