Skip to main content

Energy-Efficient Automatic Light Control System for Modern Urban City

  • Conference paper
  • First Online:
Resilient and Responsible Smart Cities

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

  • 264 Accesses

Abstract

Nowadays electrical lights utilization has become an indispensable component in our daily life from home to industrial applications. But unnecessary and manual light control system results in a considerable amount of energy wastage. In this research, Arduino-based centralized automatic energy-efficient lighting control system has been proposed for home and commercial buildings by sensing environmental illuminance and people occupancy. Arduino Uno R3 with atmega328p microcontroller will control the power of the lights, based on the analyzed data acquired from several illuminance and infrared occupancy sensors. It is expected that the proposed control system can be more power-efficient than usual artificial control, and in the future, intelligent techniques will also be implemented to optimize our system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barati, B., Karana, E., Sekulovski, D., & Pont, S. C. (2016). Retail lighting and textiles: Designing a lighting probe set. Lighting Research & Technology, 49(2), 173–194.

    Article  Google Scholar 

  • Borile, S., Pandharipande, A., Caicedo, D., Schenato, L., & Cenedese, A. (2017). A data-driven daylight estimation approach to lighting control. IEEE Access, 5, 21461–21471.

    Article  Google Scholar 

  • Byun, J., & Shin, T. (2018). Design and implementation of an energy-saving lighting control system considering user satisfaction. IEEE Transactions on Consumer Electronics, 64(1), 61–68.

    Article  Google Scholar 

  • Caicedo, D., & Pandharipande, A. (2012). Distributed illumination control with local sensing and actuation in networked lighting systems. IEEE Sensors Journal, 13(3), 1092–1104.

    Article  Google Scholar 

  • Choi, B. (2012). AC LED dimmer and dimming method thereby. United States Patent 8901841.

    Google Scholar 

  • Dong, Y., Ding, Y., Wang, X., Wu, G., Xiao, B., & Tian, Y. (2017). A significant blocking effect of Ni plating layer on the diffusion of Zn element of brass substrate. In 2017 18th International Conference on Electronic Packaging Technology (ICEPT) (pp. 1655–1657). IEEE. (2017, August).

    Google Scholar 

  • Grigoryev, E. A., Baklanov, A. E., Grigoryeva, S. V., Kumargazhanova, S. K., & Sayun, V. M. (2019, June). Illuminance adjustment in a LED lighting system using a webcam. In 2019 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) (pp. 388–393). Erlagol (Altai Republic), Russia. IEEE. (2019, June).

    Google Scholar 

  • Jovanovic, N., Ozcelebi, T., & Lukkien, J. (2014). Indoor user positioning using infrared LEDs and sensors. In 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 400–406). Busan. IEEE. (2014, October).

    Google Scholar 

  • Kaneko, Y., Matsushita, M., Kitagami, S., & Kiyohara, R. (2013, October). An energy-saving office lighting control system linked to employee's entry/exist. In 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE) (pp. 440–444). Tokyo. IEEE. (2013, October).

    Google Scholar 

  • Kim, D., Lee, J., Jang, Y., & Cha, J. (2011). Smart led lighting system implementation using human tracking us/ir sensor. In ICTC 2011 (pp. 290–293). IEEE. (2011, September).

    Google Scholar 

  • Labeodan, T., De Bakker, C., Rosemann, A., & Zeiler, W. (2016). On the application of wireless sensors and actuators network in existing buildings for occupancy detection and occupancy-driven lighting control. Energy and Buildings, 127, 75–83.

    Article  Google Scholar 

  • LeBlanc, D., Hamam, H., & Bouslimani, Y. (2006). Infrared-based Human-machine interaction. In 2006 2nd International Conference on Information & Communication Technologies (Vol. 1, pp. 870–875). IEEE. (2006, April).

    Google Scholar 

  • Light in the Ocean | manoa.hawaii.edu/ExploringOurFluidEarth. (2021). Retrieved August 9, 2021, from https://manoa.hawaii.edu/exploringourfluidearth/physical/ocean-depths/light-ocean.

  • Liu, J., Zhang, W., & Liu, Y. (2017). Primary frequency response from the control of LED lighting loads in commercial buildings. IEEE Transactions on Smart Grid, 8(6), 2880–2889.

    Article  Google Scholar 

  • Miki, M., Yoshida, K., Yoshimi, M., Ito, H., & Nagano, M. (2012, October). Faster illuminance convergence for the intelligent lighting system using visible light communication. In 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 3179–3184). IEEE. (2012, October).

    Google Scholar 

  • Parise, G., Martirano, L., & Di Ponio, S. (2013). Energy performance of interior lighting systems. IEEE Transactions on Industry Applications, 49(6), 2793–2801.

    Article  Google Scholar 

  • Parise, G., Martirano, L., & Cecchini, G. (2014). Design and energetic analysis of an advanced control upgrading existing lighting systems. IEEE Transactions on Industry Applications, 50(2), 1338–1347.

    Article  Google Scholar 

  • Parise, G., Martirano, L., & Parise, L. (2015). A procedure to estimate the energy requirements for lighting. IEEE Transactions on Industry Applications, 52(1), 34–41.

    Article  Google Scholar 

  • Qin, X., Wu, Z., Fu, B., & Li, S. (2018). An energy-saving design of smart light controller based on the position of person. In 2018 13th World Congress on Intelligent Control and Automation (WCICA) (pp. 32–36). Changsha, China, MI: IEEE. (2018, July).

    Google Scholar 

  • Tahan, M., & Hu, T. (2017). Multiple string LED driver with flexible and high-performance PWM dimming control. IEEE Transactions on Power Electronics, 32(12), 9293–9306.

    Article  Google Scholar 

  • Tan, Y. K., Huynh, T. P., & Wang, Z. (2013). Smart personal sensor network control for energy saving in DC grid powered LED lighting system. IEEE Transactions on Smart Grid, 4(2), 669–676.

    Article  Google Scholar 

  • Tao, Y., Kuki, Y., Matsushita, G., Maehara, D., Sampei, S., & Sakaguchi, K. (2015, September). Deployment of LED light control system using battery-less wireless human detection sensor networks. In 2015 IEEE International Conference on RFID Technology and Applications (RFID-TA) (pp. 14–19). Tokyo. IEEE. (2015, September).

    Google Scholar 

  • Viani, F., Polo, A., Garofalo, P., Anselmi, N., Salucci, M., & Giarola, E. (2017). Evolutionary optimization applied to wireless smart lighting in energy-efficient museums. IEEE Sensors Journal, 17(5), 1213–1214.

    Article  Google Scholar 

  • Xu, L., Pan, Y., Yao, Y., Cai, D., Huang, Z., & Linder, N. (2017). Lighting energy efficiency in offices under different control strategies. Energy and Buildings, 138, 127–139.

    Article  Google Scholar 

  • Yang, R., Wang, L., & Wang, Z. (2011). Multi-objective particle swarm optimization for decision-making in building automation. In 2011 IEEE Power and Energy Society General Meeting (pp. 1–5). Detroit, MI, USA. IEEE. (2011, July).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Xiamen University Malaysia (XMUM) for the funding under grant no. XMUMRF/2018-C2/IECE/0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingge Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, F., Tao, Y., Lan, T., Wang, S., Sobhan, B.M.A. (2022). Energy-Efficient Automatic Light Control System for Modern Urban City. In: Rodrigues, H., Fukuda, T., Elias Bibri, S. (eds) Resilient and Responsible Smart Cities. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-98423-6_10

Download citation

Publish with us

Policies and ethics