Skip to main content

A Novel Methodology for Assessing and Modeling Manufacturing Processes: A Case Study for the Metallurgical Industry

  • Conference paper
  • First Online:
Intelligent Human Computer Interaction (IHCI 2021)

Abstract

Historically, researchers and practitioners have often failed to consider all the areas, factors, and implications of a process within an integrated manufacturing model. Thus, the aim of this research was to propose a holistic approach to manufacturing processes to assess their status and performance. Moreover, using the conceptual model, manufacturing systems can be modelled, considering all areas, flows, and factors in the respective areas of production, maintenance, and quality. As a result, the model serves as the basis for the integral management and control of manufacturing systems in digital twin models for the regulation of process stability and quality with maintenance strategies. Thus, a system dynamics simulation model based on the conceptual model is developed for a metallurgical process. The results show how the monitoring of all flows together with the optimal strategies in the quality and maintenance areas enable companies to increase their profitability and customer service level. In conclusion, the conceptual approach and the applied simulation case study allow better decision making, ensuring continuous optimization along the manufacturing asset lifecycle, and providing a unique selling proposition for equipment producers and service engineering suppliers as well as industrial companies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qin, J., Liu, Y., Grosvenor, R.: A categorical framework of manufacturing for industry 4.0 and beyond. Procedia Cirp 52, 173–178 (2016)

    Article  Google Scholar 

  2. Schilberg, D., Meisen, T., Reinhard, R.: Virtual production-the connection of the modules through the virtual production intelligence. In: Proceedings of the World Congress on Engineering and Computer Science, vol. 2, pp. 23–25 (2013)

    Google Scholar 

  3. Keddis, N., Kainz, G., Buckl, C., Knoll, A.: Towards adaptable manufacturing systems. In: 2013 IEEE International Conference on Industrial Technology (ICIT), pp. 1410–1415. IEEE (2013)

    Google Scholar 

  4. Florescu, A., Barabas, S.A.: Modeling and simulation of a flexible manufacturing system—a basic component of industry 4.0. Appl. Sci. 10, 8300 (2020)

    Article  Google Scholar 

  5. Stich, V., Oflazgil, K., Schröter, M., Reschke, J., Jordan, F., Fuhs, G.: Big data implementation for the reaction management in manufacturing systems. In: 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT), pp. 1–6. IEEE (2015)

    Google Scholar 

  6. Magnanini, M.C., Tolio, T.A.: A model-based digital twin to support responsive manufacturing systems. CIRP Ann. 70, 353–356 (2021)

    Article  Google Scholar 

  7. Vaidya, S., Ambad, P., Bhosle, S.: Industry 4.0–a glimpse. Procedia Manuf. 20, 233–238 (2018)

    Article  Google Scholar 

  8. Cortés, C.B.Y., Landeta, J.M.I., Chacón, J.G.B.: El entorno de la industria 4.0: implicaciones y perspectivas futuras. Concienc. Tecnol. 54, 33–45 (2017)

    Google Scholar 

  9. Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 11, 939–948 (2017)

    Article  Google Scholar 

  10. Al-Ahmari, A.M.A., Ridgway, K.: An integrated modeling method to support manufacturing systems analysis and design. Comput. Ind. 38, 225–238 (1999)

    Article  Google Scholar 

  11. Thombansen, U., et al.: Model-based self-optimization for manufacturing systems. In: 2011 17th International Conference on Concurrent Enterprising, pp. 1–9. IEEE (2011)

    Google Scholar 

  12. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of industrie 4.0: an outlook. Int. J. Distrib. Sensor Netw. 12, 3159805 (2016)

    Article  Google Scholar 

  13. Oztemel, E., Tekez, E.K.: A general framework of a reference model for intelligent integrated manufacturing systems (REMIMS). Eng. Appl. Artif. Intell. 22, 855–864 (2009)

    Article  Google Scholar 

  14. ISO. ISO 9000: 2015 Sistemas de gestión de la calidad-Fundamentos y vocabulario (2015)

    Google Scholar 

  15. Hinckeldeyn, J., Dekkers, R., Altfeld, N., Kreutzfeldt, J.: Bottleneck-based synchronisation of engineering and manufacturing. In: Proceedings of the 19th International Conference on Management of Technology, IAMOT 2010, Cairo, Egypt. International Association for Management of Technology (2010)

    Google Scholar 

  16. Gutenberg, E.: Grundlagen der Betriebswirtschaftslehre, vol. 22. Springer, Heidelberg (1976). https://doi.org/10.1007/978-3-662-21965-2

    Book  Google Scholar 

  17. Permin, E., et al.: Self-optimizing production systems. Procedia Cirp 41, 417–422 (2016)

    Article  Google Scholar 

  18. Habchi, G., Berchet, C.: A model for manufacturing systems simulation with a control dimension. Simul. Model. Pract. Theor. 11, 21–44 (2003)

    Article  Google Scholar 

  19. Schuh, G., Stich, V., Wienholdt, H.: Logistikmanagement. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-28992-7

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gallego-García Sergio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jan, R., Diego, GG., Sergio, GG., Manuel, GG. (2022). A Novel Methodology for Assessing and Modeling Manufacturing Processes: A Case Study for the Metallurgical Industry. In: Kim, JH., Singh, M., Khan, J., Tiwary, U.S., Sur, M., Singh, D. (eds) Intelligent Human Computer Interaction. IHCI 2021. Lecture Notes in Computer Science, vol 13184. Springer, Cham. https://doi.org/10.1007/978-3-030-98404-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98404-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98403-8

  • Online ISBN: 978-3-030-98404-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics