Skip to main content

Coarse Graining and the Quantum Theory of Atoms in Molecules

  • Chapter
  • First Online:
Philosophical Perspectives in Quantum Chemistry

Part of the book series: Synthese Library ((SYLI,volume 461))

  • 305 Accesses

Abstract

This chapter explores the role played by the Quantum Theory of Atoms in Molecules (QTAIM) in the relation between molecular chemistry and quantum mechanics, in the conceptual framework of coarse graining. It is shown that the electron density is a coarse-grained magnitude when considered from the viewpoint of quantum mechanics. As a consequence, all the concepts defined in terms of the electron density, such as those of topological atom and bond path, are also coarse-grained concepts in relation to quantum mechanics. Since coarse graining is a paradigmatic example of multiple realizability and, with this, of supervenience, the way in which the relationship between QTAIM and quantum mechanics is conceived depends on how supervenience is philosophically interpreted, and this in turn affects how the relationship between molecular chemistry and quantum mechanics is understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, S. (1920). Space, time, and deity. 2 vols. Macmillan.

    Google Scholar 

  • Bader, R. F. W. (1964). Binding regions in polyatomic molecules and electron density distributions. Journal of the American Chemical Society, 86, 5070–5075.

    Article  Google Scholar 

  • Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford University Press.

    Google Scholar 

  • Bader, R. F. W. (2009). Bond paths are not chemical bonds. The Journal of Physical Chemistry A, 113, 10391–10396.

    Article  Google Scholar 

  • Bader, R. F. W. (2011). On the non-existence of parallel universes in chemistry. Foundations of Chemistry, 13, 11–37.

    Article  Google Scholar 

  • Bader, R. F. W., & Beddall, P. M. (1972). Virial field relationship for molecular charge distributions and the spatial partitioning of molecular properties. The Journal of Chemical Physics, 56, 3320–3329.

    Article  Google Scholar 

  • Bader, R. F. W., & Chandra, A. K. (1968). A view of bond formation in terms of molecular charge distributions. Canadian Journal of Chemistry, 46, 953–966.

    Article  Google Scholar 

  • Bader, R. F. W., & Jones, G. A. (1963a). The electron density distribution in hydride molecules. The ammonia molecule. The Journal of Chemical Physics, 38, 2791–2802.

    Article  Google Scholar 

  • Bader, R. F. W., & Jones, G. A. (1963b). The electron density distributions in hydride molecules, I, The water molecule. Canadian Journal of Chemistry, 41, 586–606.

    Article  Google Scholar 

  • Bader, R. F. W., & Jones, G. A. (1963c). The electron density distributions in hydride molecules, III, The hydrogen fluoride molecule. Canadian Journal of Chemistry, 41, 2251–2264.

    Article  Google Scholar 

  • Bader, R. F. W., & Matta, C. F. (2004). Atomic charges are measurable quantum expectation values: A rebuttal of criticisms of QTAIM charges. The Journal of Physical Chemistry A, 108, 8385–8394.

    Article  Google Scholar 

  • Bader, R. F. W., & Matta, C. F. (2013). Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Foundations of Chemistry, 15, 253–276.

    Article  Google Scholar 

  • Bader, R. F. W., & Zou, P. F. (1992). An atomic population as the expectation value of a quantum observable. Chemical Physics Letters, 191, 54–58.

    Article  Google Scholar 

  • Bader, R. F. W., Henneker, W. H., & Cade, P. E. (1967a). Molecular charge distributions and chemical binding. The Journal of Chemical Physics, 46, 3341–3363.

    Article  Google Scholar 

  • Bader, R. F. W., Keaveny, I., & Cade, P. E. (1967b). Molecular charge distributions and chemical binding II. First-row diatomic hydrides. The Journal of Chemical Physics, 47, 3381–3402.

    Article  Google Scholar 

  • Bader, R. F. W., Beddall, P. M., & Peslak, J., Jr. (1973). Theoretical development of a virial relationship for spatially defined fragments of molecular systems. The Journal of Chemical Physics, 58, 557–566.

    Article  Google Scholar 

  • Bader, R. F. W., Runtz, G. R., & Messer, R. R. (1974). The virial partitioning method. Chemical and Biochemical Reactivity; The Jerusalem Symposia on Quantum Chemistry and Biochemistry, VI, 99–111.

    Article  Google Scholar 

  • Bader, R. F. W., Matta, C. F., & Cortés-Guzmán, F. (2004). Where to draw the line in defining a molecular structure. Organometallics, 23, 6253–6263.

    Article  Google Scholar 

  • Ballentine, L. (1998). Quantum mechanics: A modern development. World Scientific.

    Book  Google Scholar 

  • Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1, 195–200.

    Article  Google Scholar 

  • Berkovitz, J., Frigg, R., & Kronz, F. (2006). The ergodic hierarchy, randomness and Hamiltonian chaos. Studies in History and Philosophy of Modern Physics, 37, 661–691.

    Article  Google Scholar 

  • Bickle, J. (2020). Multiple realizability. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2020 ed.) https://plato.stanford.edu/archives/sum2020/entries/multiple-realizability/

    Google Scholar 

  • Broad, C. D. (1925). The mind and its place in nature. Routledge & Kegan Paul.

    Google Scholar 

  • Butterfield, J. (2011a). Emergence, reduction and supervenience: A varied landscape. Foundations of Physics, 41, 920–959.

    Article  Google Scholar 

  • Butterfield, J. (2011b). Less is different: Emergence and reduction reconciled. Foundations of Physics, 41, 1065–1135.

    Article  Google Scholar 

  • Coppens, P. (1992). Electron density from X-ray diffraction. Annual Review of Physical Chemistry, 43, 663–692.

    Article  Google Scholar 

  • Coppens, P. (1997). X-ray charge densities and chemical bonding. Oxford University Press.

    Book  Google Scholar 

  • d’Espagnat, B. (1976). Conceptual foundations of quantum mechanics. W. A. Benjamin.

    Google Scholar 

  • Daneri, A., Loinger, A., & Prosperi, G. M. (1962). Quantum theory of measurement and ergodicity conditions. Nuclear Physics, 33, 297–319.

    Article  Google Scholar 

  • Davidson, D. (1970). Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79–101). The University of Massachusetts Press.

    Google Scholar 

  • Earman, J. (1986). A primer on determinism. Reidel Publishing Company.

    Book  Google Scholar 

  • Eberhart, M., & Jones, T. (2013). The two faces of chemistry: Can they be reconciled? Foundations of Chemistry, 15, 277–285.

    Article  Google Scholar 

  • Ehrenfest, P., & Ehrenfest, T. (1912) [1959]. The conceptual foundations of the statistical approach in mechanics. Cornell University. Translation of the 1912 article appeared in Encyklopadie der Mathematischen Wissenschaften, IV.2.II.6. B. G: Teubner.

    Google Scholar 

  • Fodor, J. A. (1974). Special sciences (or: The disunity of science as a working hypothesis). Synthese, 28, 97–115.

    Article  Google Scholar 

  • Fortin, S., & Lombardi, O. (2014). Partial traces in decoherence and in interpretation: What do reduced states refer to? Foundations of Physics, 44, 426–446.

    Article  Google Scholar 

  • Frigg, R. (2007). A field guide to recent work on the foundations of thermodynamics and statistical mechanics. In D. Rickles (Ed.), The Ashgate companion to the new philosophy of physics (pp. 99–196). Ashgate.

    Google Scholar 

  • Gibbs, J. W. (1902). Elementary principles in statistical mechanics. Yale University.

    Google Scholar 

  • Grunenberg, J. (2017). Ill-defined chemical concepts: The problem of quantification. International Journal of Quantum Chemistry, 117, 1–11.

    Article  Google Scholar 

  • Hare, R. M. (1952). The language of morals. Oxford University Press.

    Google Scholar 

  • Hettema, H. (2013a). Austere quantum mechanics as a reductive basis for chemistry. Foundations of Chemistry, 15, 311–326.

    Article  Google Scholar 

  • Hettema, H. (2013b). QTAIM as a research programme: A reply to Shahbazian. Foundations of Chemistry, 15, 335–341.

    Article  Google Scholar 

  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review B, 136, 864–871.

    Article  Google Scholar 

  • Howard, D. (2007). Reduction and emergence in the physical sciences: Some lessons from the particle physics and condensed matter debate. In N. Murphy & W. R. Stoeger (Eds.), Evolution and emergence: Systems, organisms, persons (pp. 141–157). Oxford University Press.

    Google Scholar 

  • Humphreys, P. (1997a). How properties emerge. Philosophy of Science, 64, 1–17.

    Article  Google Scholar 

  • Humphreys, P. (1997b). Emergence, not supervenience. Philosophy of Science, 64, S337–S345.

    Article  Google Scholar 

  • Kim, J. (2006). Emergence: Core ideas and issues. Synthese, 151, 547–559.

    Article  Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics, 17, 59–87.

    Google Scholar 

  • Koritsanszky, T. S., & Coppens, P. (2001). Chemical applications of X-ray charge-density analysis. Chemical Reviews, 101, 1583–1628.

    Article  Google Scholar 

  • Kripke, S. (1972). Naming and necessity. Harvard University Press.

    Book  Google Scholar 

  • Lewis, D. (1994). Reduction of mind. In S. Guttenplan (Ed.), A companion to the philosophy of mind (pp. 412–431). Blackwell.

    Google Scholar 

  • Lombardi, O. (2003). El problema de la ergodicidad en mecánica estadística [The problem of ergodicity in statistical mechanics]. Crítica. Revista Hispanoamericana de Filosofía, 35, 3–41.

    Google Scholar 

  • Lombardi, O., & Labarca, M. (2006). The ontological autonomy of the chemical world: A response to Needham. Foundations of Chemistry, 8, 81–92.

    Article  Google Scholar 

  • Mackey, M. C. (1989). The dynamic origin of increasing entropy. Review of Modern Physics, 61, 981–1015.

    Article  Google Scholar 

  • Martínez González, J. C., Fortin, S., & Lombardi, O. (2019). Why molecular structure cannot be strictly reduced to quantum mechanics. Foundations of Chemistry, 21, 31–45.

    Article  Google Scholar 

  • Masillo, F., Scolarici, G., & Sozzo, S. (2009). Proper versus improper mixtures: Towards a quaternionic quantum mechanics. Theoretical and Mathematical Physics, 160, 1006–1013.

    Article  Google Scholar 

  • Matta, C. F., Lombardi, O., & Jaimes Arriaga, J. (2020). Two-step emergence: The quantum theory of atoms in molecules as a bridge between quantum mechanics and molecular chemistry. Foundations of Chemistry, 22, 107–129.

    Article  Google Scholar 

  • McLaughlin, B. (1997). Emergence and supervenience. Intellectica, 2, 25–43.

    Google Scholar 

  • McLaughlin, B., & Bennett, K. (2021). Supervenience. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2021 ed.) https://plato.stanford.edu/archives/win2018/entries/supervenience/

    Google Scholar 

  • Moore, G. E. (1922). Philosophical studies. Routledge.

    Google Scholar 

  • Morgan, C. L. (1923). Emergent evolution. Williams and Norgate.

    Google Scholar 

  • Parr, R., Ayers, P., & Nalewajski, R. (2005). What is an atom in a molecule? The Journal of Physical Chemistry A, 109, 3957–3959.

    Article  Google Scholar 

  • Putnam, H. (1967). Psychological predicates. In W. H. Capitan & D. D. Merrill (Eds.), Art, mind, and religion (pp. 37–48). University of Pittsburgh Press.

    Google Scholar 

  • Rueger, A. (2000). Physical emergence, diachronic and synchronic. Synthese, 124, 297–322.

    Article  Google Scholar 

  • Runtz, G. R., Bader, R. F. W., & Messer, R. R. (1977). Definition of bond paths and bond directions in terms of the molecular charge distribution. Canadian Journal of Chemistry, 55, 3040–3045.

    Article  Google Scholar 

  • Schrödinger, E. (1982). Collected papers on wave mechanics together with four lectures on wave mechanics, third (augmented) (English ed.). American Mathematical Society – Chelsea Publishing.

    Google Scholar 

  • Shahbazian, S. (2011). Letter to editor: The mathematical soundness and the physical content of the subsystem variational procedure of the QTAIM. International Journal of Quantum Chemistry, 111, 4497–4500.

    Article  Google Scholar 

  • Shahbazian, S. (2013). Beyond the orthodox QTAIM: Motivations, current status, prospects and challenges. Foundations of Chemistry, 15, 287–302.

    Article  Google Scholar 

  • Shahbazian, S. (2014). Letter to the editor: Are there ‘really’ atoms in molecules? Foundations of Chemistry, 16, 77–84.

    Article  Google Scholar 

  • Sklar, L. (1993). Physics and chance. Cambridge University Press.

    Book  Google Scholar 

  • Sukumar, N. (2013a). A matter of density: Exploring the electron density concept in the chemical, biological, and material sciences. Wiley.

    Google Scholar 

  • Sukumar, N. (2013b). The atom in a molecule as a mereological construct in chemistry. Foundations of Chemistry, 15, 303–309.

    Article  Google Scholar 

  • Tsirelson, V. G., & Ozerov, R. P. (1996). Electron density and bonding in crystals: Principles, theory and X-ray diffraction experiments in solid state physics and chemistry. Institute of Physics Publishing.

    Google Scholar 

  • Tsirelson, V., & Stash, A. (2004). On functions and quantities derived from the experimental electron density. Acta Crystallographica Section A, 60, 418–426.

    Google Scholar 

  • Tsirelson, V., Zou, P. F., Tang, T.-H., & Bader, R. F. W. (1995). Topological definition of crystal structure: Determination of the bonded interactions in solid molecular chlorine. Acta Crystallographica Section A, 51, 143–153.

    Google Scholar 

  • Uffink, J. (2007). Compendium of the foundations of classical statistical physics. In J. Butterfield & J. Earman (Eds.), Philosophy of physics (pp. 923–1074). Elsevier.

    Chapter  Google Scholar 

  • van Hove, L. (1957). The approach to equilibrium in quantum statistics. Physica, 23, 441–480.

    Article  Google Scholar 

  • van Hove, L. (1959). The ergodic behaviour of quantum many-body systems. Physica, 25, 268–276.

    Article  Google Scholar 

  • van Kampen, N. (1954). Quantum statistics of irreversible processes. Physica, 20, 603–622.

    Article  Google Scholar 

  • Zurek, W. H. (1991). Decoherence and the transition from quantum to classical. Physics Today, 44, 36–44.

    Article  Google Scholar 

  • Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75, 715–776.

    Article  Google Scholar 

  • Zwanzig, R. (1961). Statistical mechanics of irreversibility. In W. E. Britten, B. W. Downs, & J. Downs (Eds.), Lectures in theoretical physics (Boulder) (Vol. 3, pp. 106–141). Inter-science.

    Google Scholar 

Download references

Acknowledgments

Chérif F. Matta acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation (CFI), and Mount Saint Vincent University for funding. Olimpia Lombardi acknowledges CONICET (National Council of Scientific and Technical Research) and ANPCyT (National Agency of Scientific and Technological Promotion) of Argentina.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lombardi, O., Matta, C.F. (2022). Coarse Graining and the Quantum Theory of Atoms in Molecules. In: Lombardi, O., Martínez González, J.C., Fortin, S. (eds) Philosophical Perspectives in Quantum Chemistry. Synthese Library, vol 461. Springer, Cham. https://doi.org/10.1007/978-3-030-98373-4_10

Download citation

Publish with us

Policies and ethics