Skip to main content

MF-GAN: Multi-conditional Fusion Generative Adversarial Network for Text-to-Image Synthesis

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13141))

Included in the following conference series:

Abstract

The performance of text-to-image synthesis has been significantly boosted accompanied by the development of generative adversarial network (GAN) techniques. The current GAN-based methods for text-to-image generation mainly adopt multiple generator-discriminator pairs to explore the coarse/fine-grained textual content (e.g., words and sentences); however, they only consider the semantic consistency between the text-image pair. One drawback of such a multi-stream structure is that it results in many heavyweight models. In comparison, the single-stream counterpart bears the weakness of insufficient use of texts. To alleviate the above problems, we propose a Multi-conditional Fusion GAN (MF-GAN) to reap the benefits of both the multi-stream and the single-stream methods. MF-GAN is a single-stream model but achieves the utilization of both coarse and fine-grained textual information with the use of conditional residual block and dual attention block. More specifically, the sentence and word features are repeatedly inputted into different model stages for textual information enhancement. Furthermore, we introduce a triple loss to close the visual gap between the synthesized image and its positive image and enlarge the gap to its negative image. To thoroughly verify our method, we conduct extensive experiments on two benchmarked CUB and COCO datasets. Experimental results show that the proposed MF-GAN outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gulcehre, C., Chandar, S., Cho, K., Bengio, Y.: Dynamic neural turing machine with continuous and discrete addressing schemes. Neural Comput. 30(4), 857–884 (2018)

    Article  MathSciNet  Google Scholar 

  2. Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical text-to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7986–7994 (2018)

    Google Scholar 

  3. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1219–1228 (2018)

    Google Scholar 

  4. Li, B., Qi, X., Lukasiewicz, T., Torr, P.H.: Controllable text-to-image generation. arXiv preprint arXiv:1909.07083 (2019)

  5. Li, W., et al.: Object-driven text-to-image synthesis via adversarial training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12174–12182 (2019)

    Google Scholar 

  6. Liang, J., Pei, W., Lu, F.: CPGAN: content-parsing generative adversarial networks for text-to-image synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 491–508. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_29

    Chapter  Google Scholar 

  7. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  8. Melekhov, I., Kannala, J., Rahtu, E.: Siamese network features for image matching. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 378–383. IEEE (2016)

    Google Scholar 

  9. Qiao, T., Zhang, J., Xu, D., Tao, D.: Mirrorgan: learning text-to-image generation by redescription. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1505–1514 (2019)

    Google Scholar 

  10. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069. PMLR (2016)

    Google Scholar 

  11. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. arXiv preprint arXiv:1606.03498 (2016)

  12. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  13. Tan, H., Liu, X., Li, X., Zhang, Y., Yin, B.: Semantics-enhanced adversarial nets for text-to-image synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10501–10510 (2019)

    Google Scholar 

  14. Tao, M., Tang, H., Wu, S., Sebe, N., Wu, F., Jing, X.Y.: DF-GAN: deep fusion generative adversarial networks for text-to-image synthesis. arXiv preprint arXiv:2008.05865 (2020)

  15. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technocal Report CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  16. Xu, T., et al.: Attngan: fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)

    Google Scholar 

  17. Yin, G., Liu, B., Sheng, L., Yu, N., Wang, X., Shao, J.: Semantics disentangling for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2327–2336 (2019)

    Google Scholar 

  18. Zhang, H., et al.: Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5907–5915 (2017)

    Google Scholar 

  19. Zhang, Z., Schomaker, L.: DTGAN: dual attention generative adversarial networks for text-to-image generation. arXiv preprint arXiv:2011.02709 (2020)

  20. Zhang, Z., Xie, Y., Yang, L.: Photographic text-to-image synthesis with a hierarchically-nested adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6199–6208 (2018)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their valuable suggestions. Haiyong Xie is the correspondence author. This work is supported in part by the National Key R&D Project (Grant No. SQ2021YFC3300088) and the Natural Science Foundation of China (Grant No. U19B2036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyong Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Y. et al. (2022). MF-GAN: Multi-conditional Fusion Generative Adversarial Network for Text-to-Image Synthesis. In: Þór Jónsson, B., et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13141. Springer, Cham. https://doi.org/10.1007/978-3-030-98358-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98358-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98357-4

  • Online ISBN: 978-3-030-98358-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics