Skip to main content

Abstract

The shoulder joint has an incredible degree of motion and function, yet it is often used to initiate or to guard against impact in contact sports, making it vulnerable to both chronic, attritional injuries and traumatic injuries. The shoulder is easily accessible and able to be evaluated because of its superficial nature, its shallow glenoid articulation, and relative lack of external bony coverage compared to other joints. This permits the joint, tendons, and ligaments to be easily and relatively completely evaluated and for therapeutic injections to be very accurately delivered to almost all articular and tendinous structures associated with the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buck FM, et al. Degeneration of the long biceps tendon: comparison of MRI with gross anatomy and histology. AJR Am J Roentgenol. 2009;193(5):1367–75.

    Article  PubMed  Google Scholar 

  2. Buck FM, et al. Magnetic resonance histologic correlation in rotator cuff tendons. J Magn Reson Imaging. 2010;32(1):165–72.

    Article  PubMed  Google Scholar 

  3. Jacobson JA, et al. Full-thickness and partial-thickness supraspinatus tendon tears: value of US signs in diagnosis. Radiology. 2004;230(1):234–42.

    Article  PubMed  Google Scholar 

  4. Skendzel JG, et al. Long head of biceps brachii tendon evaluation: accuracy of preoperative ultrasound. AJR Am J Roentgenol. 2011;197(4):942–8.

    Article  PubMed  Google Scholar 

  5. Jacobson J. Fundamentals of musculoskeletal ultrasound. 3rd ed. Philadelphia: Elsevier, Inc.; 2018.

    Google Scholar 

  6. Bianchi S, Martinoli C. Ultrasound of the musculoskeletal system. Berlin: Springer Science & Business Media; 2007.

    Book  Google Scholar 

  7. Nwawka OK, et al. Volume and movement affecting flow of Injectate between the biceps tendon sheath and Glenohumeral joint: a cadaveric study. AJR Am J Roentgenol. 2016;206(2):373–7.

    Article  PubMed  Google Scholar 

  8. Hollister MS, et al. Association of sonographically detected subacromial/subdeltoid bursal effusion and intraarticular fluid with rotator cuff tear. AJR Am J Roentgenol. 1995;165(3):605–8.

    Article  CAS  PubMed  Google Scholar 

  9. Beall DP, et al. Association of biceps tendon tears with rotator cuff abnormalities: degree of correlation with tears of the anterior and superior portions of the rotator cuff. AJR Am J Roentgenol. 2003;180(3):633–9.

    Article  PubMed  Google Scholar 

  10. Catapano M, et al. Effectiveness of dextrose Prolotherapy for rotator cuff tendinopathy: a systematic review. PM R. 2020;12(3):288–300.

    Article  PubMed  Google Scholar 

  11. Seven MM, et al. Effectiveness of prolotherapy in the treatment of chronic rotator cuff lesions. Orthop Traumatol Surg Res. 2017;103(3):427–33.

    Article  CAS  PubMed  Google Scholar 

  12. Ibrahim VM, et al. Use of platelet rich plasma for the treatment of bicipital tendinopathy in spinal cord injury:: a pilot study. Top Spinal Cord Inj Rehabil. 2012;18(1):77–8.

    Article  PubMed  Google Scholar 

  13. Petchprapa CN, et al. The rotator interval: a review of anatomy, function, and normal and abnormal MRI appearance. AJR Am J Roentgenol. 2010;195(3):567–76.

    Article  PubMed  Google Scholar 

  14. Gazzillo GP, et al. Accuracy of palpating the long head of the biceps tendon: an ultrasonographic study. PM R. 2011;3(11):1035–40.

    Article  PubMed  Google Scholar 

  15. Aly AR, Rajasekaran S, Ashworth N. Ultrasound-guided shoulder girdle injections are more accurate and more effective than landmark-guided injections: a systematic review and meta-analysis. Br J Sports Med. 2015;49(16):1042–9.

    Article  PubMed  Google Scholar 

  16. Hashiuchi T, et al. Accuracy of the biceps tendon sheath injection: ultrasound-guided or unguided injection? A randomized controlled trial. J Shoulder Elb Surg. 2011;20(7):1069–73.

    Article  Google Scholar 

  17. Yiannakopoulos CK, et al. Ultrasound-guided versus palpation-guided corticosteroid injections for tendinosis of the long head of the biceps: a randomized comparative study. Skelet Radiol. 2020;49(4):585–91.

    Article  Google Scholar 

  18. Kim SY, et al. Three-dimensional study of the musculotendinous architecture of supraspinatus and its functional correlations. Clin Anat. 2007;20(6):648–55.

    Article  PubMed  Google Scholar 

  19. Vahlensieck M, Haack K a, Schmidt HM. Two portions of the supraspinatus muscle: a new finding about the muscles macroscopy by dissection and magnetic resonance imaging. Surg Radiol Anat. 1994;16(1):101–4.

    Article  CAS  PubMed  Google Scholar 

  20. Ferri M, et al. Sonography of full-thickness supraspinatus tears: comparison of patient positioning technique with surgical correlation. AJR Am J Roentgenol. 2005;184(1):180–4.

    Article  PubMed  Google Scholar 

  21. Ruotolo C, Fow JE, Nottage WM. The supraspinatus footprint: an anatomic study of the supraspinatus insertion. Arthroscopy. 2004;20(3):246–9.

    Article  PubMed  Google Scholar 

  22. Bretzke CA, et al. Ultrasonography of the rotator cuff. Normal and pathologic anatomy. Investig Radiol. 1985;20(3):311–5.

    Article  CAS  Google Scholar 

  23. Karthikeyan S, et al. Ultrasound dimensions of the rotator cuff in young healthy adults. J Shoulder Elb Surg. 2014;23(8):1107–12.

    Article  Google Scholar 

  24. Kim K, et al. Ultrasound dimensions of the rotator cuff and other associated structures in Korean healthy adults. J Korean Med Sci. 2016;31(9):1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schaeffeler C, et al. Tears at the rotator cuff footprint: prevalence and imaging characteristics in 305 MR arthrograms of the shoulder. Eur Radiol. 2011;21(7):1477–84.

    Article  PubMed  Google Scholar 

  26. de Jesus JO, et al. Accuracy of MRI, MR arthrography, and ultrasound in the diagnosis of rotator cuff tears: a meta-analysis. AJR Am J Roentgenol. 2009;192(6):1701–7.

    Article  PubMed  Google Scholar 

  27. Roy JS, et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis. Br J Sports Med. 2015;49(20):1316–28.

    Article  PubMed  Google Scholar 

  28. Kim HM, et al. Location and initiation of degenerative rotator cuff tears: an analysis of three hundred and sixty shoulders. J Bone Joint Surg Am. 2010;92(5):1088–96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. van Holsbeeck MT, et al. US depiction of partial-thickness tear of the rotator cuff. Radiology. 1995;197(2):443–6.

    Article  PubMed  Google Scholar 

  30. Chianca V, et al. Rotator cuff calcific tendinopathy: from diagnosis to treatment. Acta Biomed. 2018;89(1-s):186–96.

    PubMed  PubMed Central  Google Scholar 

  31. Sansone V, et al. Calcific tendinopathy of the shoulder: clinical perspectives into the mechanisms, pathogenesis, and treatment. Orthop Res Rev. 2018;10:63–72.

    PubMed  PubMed Central  Google Scholar 

  32. Uhthoff HK, Loehr JW. Calcific tendinopathy of the rotator cuff: pathogenesis, diagnosis, and management. J Am Acad Orthop Surg. 1997;5(4):183–91.

    Article  CAS  PubMed  Google Scholar 

  33. Hackett L, et al. Are the symptoms of calcific tendinitis due to Neoinnervation and/or neovascularization? J Bone Joint Surg Am. 2016;98(3):186–92.

    Article  PubMed  Google Scholar 

  34. Chiou HJ, et al. The role of high-resolution ultrasonography in management of calcific tendonitis of the rotator cuff. Ultrasound Med Biol. 2001;27(6):735–43.

    Article  CAS  PubMed  Google Scholar 

  35. Farin PU. Consistency of rotator-cuff calcifications. Observations on plain radiography, sonography, computed tomography, and at needle treatment. Investig Radiol. 1996;31(5):300–4.

    Article  CAS  Google Scholar 

  36. Gärtner J, Heyer A. Calcific tendinitis of the shoulder. Orthopade. 1995;24(3):284–302.

    PubMed  Google Scholar 

  37. Molé D, et al. Results of endoscopic treatment of non-broken tendinopathies of the rotator cuff. 2. Calcifications of the rotator cuff. Rev Chir Orthop Reparatrice Appar Mot. 1993;79(7):532–41.

    PubMed  Google Scholar 

  38. Dean BJ, et al. The risks and benefits of glucocorticoid treatment for tendinopathy: a systematic review of the effects of local glucocorticoid on tendon. Semin Arthritis Rheum. 2014;43(4):570–6.

    Article  CAS  PubMed  Google Scholar 

  39. Castricini R, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011;39(2):258–65.

    Article  PubMed  Google Scholar 

  40. Flury M, et al. Does pure platelet-rich plasma affect postoperative clinical outcomes after arthroscopic rotator cuff repair? A randomized controlled trial. Am J Sports Med. 2016;44(8):2136–46.

    Article  PubMed  Google Scholar 

  41. Jo CH, et al. Does platelet-rich plasma accelerate recovery after rotator cuff repair? A prospective cohort study. Am J Sports Med. 2011;39(10):2082–90.

    Article  PubMed  Google Scholar 

  42. Malavolta EA, et al. Platelet-rich plasma in rotator cuff repair: a prospective randomized study. Am J Sports Med. 2014;42(10):2446–54.

    Article  PubMed  Google Scholar 

  43. Randelli P, et al. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. J Shoulder Elb Surg. 2011;20(4):518–28.

    Article  Google Scholar 

  44. Carr JB 2nd, Rodeo SA. The role of biologic agents in the management of common shoulder pathologies: current state and future directions. J Shoulder Elb Surg. 2019;28(11):2041–52.

    Article  Google Scholar 

  45. Zhang Q, et al. Are platelet-rich products necessary during the arthroscopic repair of full-thickness rotator cuff tears: a meta-analysis. PLoS One. 2013;8(7):e69731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang A, et al. Do postoperative platelet-rich plasma injections accelerate early tendon healing and functional recovery after arthroscopic supraspinatus repair? A randomized controlled trial. Am J Sports Med. 2015;43(6):1430–7.

    Article  PubMed  Google Scholar 

  47. Moraes VY, et al. Platelet-rich therapies for musculoskeletal soft tissue injuries. Cochrane Database Syst Rev. 2013;12:Cd010071.

    Google Scholar 

  48. Schwitzguebel AJ, et al. Efficacy of platelet-rich plasma for the treatment of interstitial supraspinatus tears: a double-blinded, randomized controlled trial. Am J Sports Med. 2019;47(8):1885–92.

    Article  PubMed  Google Scholar 

  49. Rha DW, et al. Comparison of the therapeutic effects of ultrasound-guided platelet-rich plasma injection and dry needling in rotator cuff disease: a randomized controlled trial. Clin Rehabil. 2013;27(2):113–22.

    Article  PubMed  Google Scholar 

  50. Kesikburun S, et al. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013;41(11):2609–16.

    Article  PubMed  Google Scholar 

  51. Lin MT, et al. Comparative effectiveness of injection therapies in rotator cuff tendinopathy: a systematic review, pairwise and network meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2019;100(2):336–349.e15.

    Article  PubMed  Google Scholar 

  52. Mautner K, et al. A call for a standard classification system for future biologic research: the rationale for new PRP nomenclature. PM R. 2015;7(4 Suppl):S53–s59.

    Article  PubMed  Google Scholar 

  53. Kim SJ, et al. Effect of platelet-rich plasma on the degenerative rotator cuff tendinopathy according to the compositions. J Orthop Surg Res. 2019;14(1):408.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cole B, et al. Ultrasound-guided injections for supraspinatus tendinopathy: corticosteroid versus glucose prolotherapy - a randomized controlled clinical trial. Shoulder Elbow. 2018;10(3):170–8.

    Article  PubMed  Google Scholar 

  55. George J, et al. Comparative effectiveness of ultrasound-guided Intratendinous Prolotherapy injection with conventional treatment to treat focal supraspinatus tendinosis. Scientifica (Cairo). 2018;2018:4384159.

    Google Scholar 

  56. Lin CL, Huang CC, Huang SW. Effects of hypertonic dextrose injection in chronic supraspinatus tendinopathy of the shoulder: a randomized placebo-controlled trial. Eur J Phys Rehabil Med. 2019;55(4):480–7.

    Article  PubMed  Google Scholar 

  57. Osti L, et al. Clinical evidence in the treatment of rotator cuff tears with hyaluronic acid. Muscles Ligaments Tendons J. 2015;5(4):270–5.

    Article  PubMed  Google Scholar 

  58. Cai YU, et al. Sodium hyaluronate and platelet-rich plasma for partial-thickness rotator cuff tears. Med Sci Sports Exerc. 2019;51(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  59. Wu PT, et al. Intratendinous injection of hyaluronate induces acute inflammation: a possible detrimental effect. PLoS One. 2016;11(5):e0155424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kim SJ, et al. Effects of bone marrow aspirate concentrate and platelet-rich plasma on patients with partial tear of the rotator cuff tendon. J Orthop Surg Res. 2018;13(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jo CH, et al. Intratendinous injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of rotator cuff disease: a first-in-human trial. Stem Cells. 2018;36(9):1441–50.

    Article  CAS  PubMed  Google Scholar 

  62. Finnoff JT, et al. Treatment of chronic tendinopathy with ultrasound-guided needle tenotomy and platelet-rich plasma injection. PM R. 2011;3(10):900–11.

    Article  PubMed  Google Scholar 

  63. Gatt DL, Charalambous CP. Ultrasound-guided barbotage for calcific tendonitis of the shoulder: a systematic review including 908 patients. Arthroscopy. 2014;30(9):1166–72.

    Article  PubMed  Google Scholar 

  64. de Witte PB, et al. Rotator cuff calcific tendinitis: ultrasound-guided needling and lavage versus subacromial corticosteroids: five-year outcomes of a randomized controlled trial. Am J Sports Med. 2017;45(14):3305–14.

    Article  PubMed  Google Scholar 

  65. de Witte PB, et al. Calcific tendinitis of the rotator cuff: a randomized controlled trial of ultrasound-guided needling and lavage versus subacromial corticosteroids. Am J Sports Med. 2013;41(7):1665–73.

    Article  PubMed  Google Scholar 

  66. Morag Y, et al. The subscapularis: anatomy, injury, and imaging. Skelet Radiol. 2011;40(3):255–69.

    Article  Google Scholar 

  67. Radas CB, Pieper HG. The coracoid impingement of the subscapularis tendon: a cadaver study. J Shoulder Elb Surg. 2004;13(2):154–9.

    Article  Google Scholar 

  68. Navarro-Ledesma S, et al. Is coracohumeral distance associated with pain-function, and shoulder range of movement, in chronic anterior shoulder pain? BMC Musculoskelet Disord. 2017;18(1):136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sansone V, et al. Calcific tendinopathy of the rotator cuff: the correlation between pain and imaging features in symptomatic and asymptomatic female shoulders. Skelet Radiol. 2016;45(1):49–55.

    Article  Google Scholar 

  70. Fessa CK, et al. Posterosuperior glenoid internal impingement of the shoulder in the overhead athlete: pathogenesis, clinical features and MR imaging findings. J Med Imaging Radiat Oncol. 2015;59(2):182–7.

    Article  PubMed  Google Scholar 

  71. Tirman PF, et al. Posterosuperior glenoid impingement of the shoulder: findings at MR imaging and MR arthrography with arthroscopic correlation. Radiology. 1994;193(2):431–6.

    Article  CAS  PubMed  Google Scholar 

  72. Friend J, et al. Teres minor innervation in the context of isolated muscle atrophy. Surg Radiol Anat. 2010;32(3):243–9.

    Article  PubMed  Google Scholar 

  73. Kang Y, et al. The pattern of idiopathic isolated teres minor atrophy with regard to its two-bundle anatomy. Skelet Radiol. 2019;48(3):363–74.

    Article  Google Scholar 

  74. Beals TC, Harryman DT 2nd, Lazarus MD. Useful boundaries of the subacromial bursa. Arthroscopy. 1998;14(5):465–70.

    Article  CAS  PubMed  Google Scholar 

  75. Birnbaum K, Lierse W. Anatomy and function of the bursa subacromialis. Acta Anat (Basel). 1992;145(4):354–63.

    Article  CAS  Google Scholar 

  76. Kennedy MS, Nicholson HD, Woodley SJ. Clinical anatomy of the subacromial and related shoulder bursae: a review of the literature. Clin Anat. 2017;30(2):213–26.

    Article  PubMed  Google Scholar 

  77. Duranthon LD, Gagey OJ. Anatomy and function of the subdeltoid bursa. Surg Radiol Anat. 2001;23(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  78. van Holsbeeck M, Strouse PJ. Sonography of the shoulder: evaluation of the subacromial-subdeltoid bursa. AJR Am J Roentgenol. 1993;160(3):561–4.

    Article  PubMed  Google Scholar 

  79. Michener LA, et al. Supraspinatus tendon and subacromial space parameters measured on ultrasonographic imaging in subacromial impingement syndrome. Knee Surg Sports Traumatol Arthrosc. 2015;23(2):363–9.

    Article  PubMed  Google Scholar 

  80. Bureau NJ, et al. Dynamic sonography evaluation of shoulder impingement syndrome. AJR Am J Roentgenol. 2006;187(1):216–20.

    Article  PubMed  Google Scholar 

  81. Beard DJ, et al. Arthroscopic subacromial decompression for subacromial shoulder pain (CSAW): a multicentre, pragmatic, parallel group, placebo-controlled, three-group, randomised surgical trial. Lancet. 2018;391(10118):329–38.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Haahr JP, et al. Exercises versus arthroscopic decompression in patients with subacromial impingement: a randomised, controlled study in 90 cases with a one year follow up. Ann Rheum Dis. 2005;64(5):760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu T, et al. Ultrasound-guided versus blind subacromial-subdeltoid bursa injection in adults with shoulder pain: a systematic review and meta-analysis. Semin Arthritis Rheum. 2015;45(3):374–8.

    Article  PubMed  Google Scholar 

  84. Nejati P, et al. Treatment of subacromial impingement syndrome: platelet-rich plasma or exercise therapy? A randomized controlled trial. Orthop J Sports Med. 2017;5(5):2325967117702366.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Say F, Gurler D, Bulbul M. Platelet-rich plasma versus steroid injection for subacromial impingement syndrome. J Orthop Surg (Hong Kong). 2016;24(1):62–6.

    Article  CAS  Google Scholar 

  86. Schneider A, et al. Platelet-rich plasma and the shoulder: clinical indications and outcomes. Curr Rev Musculoskelet Med. 2018;11(4):593–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rutten MJ, et al. Injection of the subacromial-subdeltoid bursa: blind or ultrasound-guided? Acta Orthop. 2007;78(2):254–7.

    Article  PubMed  Google Scholar 

  88. Dogu B, et al. Blind or ultrasound-guided corticosteroid injections and short-term response in subacromial impingement syndrome: a randomized, double-blind, prospective study. Am J Phys Med Rehabil. 2012;91(8):658–65.

    Article  PubMed  Google Scholar 

  89. Ahn KS, et al. Ultrasound elastography of lateral epicondylosis: clinical feasibility of quantitative elastographic measurements. AJR Am J Roentgenol. 2014;202(5):1094–9.

    Article  PubMed  Google Scholar 

  90. Mathews PV, Glousman RE. Accuracy of subacromial injection: anterolateral versus posterior approach. J Shoulder Elb Surg. 2005;14(2):145–8.

    Article  Google Scholar 

  91. Partington PF, Broome GH. Diagnostic injection around the shoulder: hit and miss? A cadaveric study of injection accuracy. J Shoulder Elb Surg. 1998;7(2):147–50.

    Article  CAS  Google Scholar 

  92. Eustace JA, et al. Comparison of the accuracy of steroid placement with clinical outcome in patients with shoulder symptoms. Ann Rheum Dis. 1997;56(1):59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mazzocca AD, Arciero RA, Bicos J. Evaluation and treatment of acromioclavicular joint injuries. Am J Sports Med. 2007;35(2):316–29.

    Article  PubMed  Google Scholar 

  94. Petersson CJ, Redlund-Johnell I. Radiographic joint space in normal acromioclavicular joints. Acta Orthop Scand. 1983;54(3):431–3.

    Article  CAS  PubMed  Google Scholar 

  95. Mall NA, et al. Degenerative joint disease of the acromioclavicular joint: a review. Am J Sports Med. 2013;41(11):2684–92.

    Article  PubMed  Google Scholar 

  96. Saccomanno MF, Ieso CDE, Milano G. Acromioclavicular joint instability: anatomy, biomechanics and evaluation. Joints. 2014;2(2):87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chronopoulos E, et al. Diagnostic value of physical tests for isolated chronic acromioclavicular lesions. Am J Sports Med. 2004;32(3):655–61.

    Article  PubMed  Google Scholar 

  98. Jacobson JA. Fundamentals of musculoskeletal ultrasound E-book. Philadelphia: Elsevier Health Sciences; 2017.

    Google Scholar 

  99. Hobusch GM, et al. Ultrasound of horizontal instability of the acromioclavicular joint : a simple and reliable test based on a cadaveric study. Wien Klin Wochenschr. 2019;131(3-4):81–6.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sammarco VJ. Os acromiale: frequency, anatomy, and clinical implications. J Bone Joint Surg Am. 2000;82(3):394–400.

    Article  CAS  PubMed  Google Scholar 

  101. Boehm TD, et al. Ultrasonographic appearance of os acromiale. Ultraschall Med. 2003;24(3):180–3.

    Article  CAS  PubMed  Google Scholar 

  102. Armstrong A. Evaluation and management of adult shoulder pain: a focus on rotator cuff disorders, acromioclavicular joint arthritis, and glenohumeral arthritis. Med Clin North Am. 2014;98(4):755–75. xii

    Article  PubMed  Google Scholar 

  103. Jacob AK, Sallay PI. Therapeutic efficacy of corticosteroid injections in the acromioclavicular joint. Biomed Sci Instrum. 1997;34:380–5.

    CAS  PubMed  Google Scholar 

  104. Chang Chien GC, et al. Ultrasonography leads to accurate diagnosis and management of painful acromioclavicular joint cyst. Pain Pract. 2015;15(7):E72–5.

    Article  PubMed  Google Scholar 

  105. Mikell C, Gelber J, Nagdev A. Ultrasound-guided analgesic injection for acromioclavicular joint separation in the emergency department. Am J Emerg Med. 2020;38(1):162.e3–5.

    Article  Google Scholar 

  106. van Riet RP, Goehre T, Bell SN. The long term effect of an intra-articular injection of corticosteroids in the acromioclavicular joint. J Shoulder Elb Surg. 2012;21(3):376–9.

    Article  Google Scholar 

  107. Gokkus K, et al. Limited distal clavicle excision of acromioclavicular joint osteoarthritis. Orthop Traumatol Surg Res. 2016;102(3):311–8.

    Article  CAS  PubMed  Google Scholar 

  108. Hsieh PC, et al. Ultrasound-guided Prolotherapy for acromial Enthesopathy and acromioclavicular joint Arthropathy: a single-arm prospective study. J Ultrasound Med. 2019;38(3):605–12.

    Article  PubMed  Google Scholar 

  109. Borbas P, et al. The influence of ultrasound guidance in the rate of success of acromioclavicular joint injection: an experimental study on human cadavers. J Shoulder Elb Surg. 2012;21(12):1694–7.

    Article  Google Scholar 

  110. Sabeti-Aschraf M, et al. Ultrasound guidance improves the accuracy of the acromioclavicular joint infiltration: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc. 2011;19(2):292–5.

    Article  PubMed  Google Scholar 

  111. Scillia A, et al. Accuracy of in vivo palpation-guided acromioclavicular joint injection assessed with contrast material and fluoroscopic evaluations. Skelet Radiol. 2015;44(8):1135–9.

    Article  Google Scholar 

  112. Wasserman BR, et al. Accuracy of acromioclavicular joint injections. Am J Sports Med. 2013;41(1):149–52.

    Article  PubMed  Google Scholar 

  113. van Tongel A, et al. A cadaveric study of the structural anatomy of the sternoclavicular joint. Clin Anat. 2012;25(7):903–10.

    Article  PubMed  Google Scholar 

  114. Bearn JG. Direct observations on the function of the capsule of the sternoclavicular joint in clavicular support. J Anat. 1967;101(Pt 1):159–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Brossmann J, et al. Sternoclavicular joint: MR imaging—anatomic correlation. Radiology. 1996;198(1):193–8.

    Article  CAS  PubMed  Google Scholar 

  116. Yood RA, Goldenberg DL. Sternoclavicular joint arthritis. Arthritis Rheum. 1980;23(2):232–9.

    Article  CAS  PubMed  Google Scholar 

  117. Stein A, McAleer S, Hinz M. Microperforation prolotherapy: a novel method for successful nonsurgical treatment of atraumatic spontaneous anterior sternoclavicular subluxation, with an illustrative case. Open Access J Sports Med. 2011;2:47–52.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Peterson CK, et al. CT-guided sternoclavicular joint injections: description of the procedure, reliability of imaging diagnosis, and short-term patient responses. AJR Am J Roentgenol. 2010;195(6):W435–9.

    Article  PubMed  Google Scholar 

  119. Taneja AK, et al. Diagnostic yield of CT-guided sampling in suspected sternoclavicular joint infection. Skelet Radiol. 2013;42(4):479–85.

    Article  Google Scholar 

  120. Galla R, et al. Sternoclavicular steroid injection for treatment of pain in a patient with osteitis condensans of the clavicle. Pain Physician. 2009;12(6):987–90.

    Article  PubMed  Google Scholar 

  121. Pourcho AM, Sellon JL, Smith J. Sonographically guided sternoclavicular joint injection: description of technique and validation. J Ultrasound Med. 2015;34(2):325–31.

    Article  PubMed  Google Scholar 

  122. Middleton WD, et al. Pitfalls of rotator cuff sonography. AJR Am J Roentgenol. 1986;146(3):555–60.

    Article  CAS  PubMed  Google Scholar 

  123. Taljanovic MS, et al. Sonography of the glenoid labrum: a cadaveric study with arthroscopic correlation. AJR Am J Roentgenol. 2000;174(6):1717–22.

    Article  CAS  PubMed  Google Scholar 

  124. Ogul H, et al. Sonoarthrographic examination of posterior labrocapsular structures of the shoulder joint. Br J Radiol. 2020;93(1106):20190886.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Park D. Evaluation of Posterosuperior labral tear with shoulder sonography after intra-articular injection: a case series. Am J Phys Med Rehabil. 2017;96(3):e48–51.

    Article  PubMed  Google Scholar 

  126. Boswell B, et al. Emergency medicine resident-driven point of care ultrasound for suspected shoulder dislocation. South Med J. 2019;112(12):605–9.

    Article  PubMed  Google Scholar 

  127. Abbasi S, et al. Diagnostic accuracy of ultrasonographic examination in the management of shoulder dislocation in the emergency department. Ann Emerg Med. 2013;62(2):170–5.

    Article  PubMed  Google Scholar 

  128. Khoury V, Van Lancker HP, Martineau PA. Sonography as a tool for identifying engaging hill-Sachs lesions: preliminary experience. J Ultrasound Med. 2013;32(9):1653–7.

    Article  PubMed  Google Scholar 

  129. Kerr R, et al. Osteoarthritis of the glenohumeral joint: a radiologic-pathologic study. AJR Am J Roentgenol. 1985;144(5):967–72.

    Article  CAS  PubMed  Google Scholar 

  130. Crowell MS, Tragord BS. Orthopaedic manual physical therapy for shoulder pain and impaired movement in a patient with glenohumeral joint osteoarthritis: a case report. J Orthop Sports Phys Ther. 2015;45(6):453–61. a1-3

    Article  PubMed  Google Scholar 

  131. Saltzman BM, et al. Glenohumeral osteoarthritis in the young patient. J Am Acad Orthop Surg. 2018;26(17):e361–70.

    Article  PubMed  Google Scholar 

  132. van der Meijden OA, Gaskill TR, Millett PJ. Glenohumeral joint preservation: a review of management options for young, active patients with osteoarthritis. Adv Orthop. 2012;2012:160923.

    PubMed  PubMed Central  Google Scholar 

  133. Sayegh ET, et al. Surgical treatment options for Glenohumeral arthritis in young patients: a systematic review and meta-analysis. Arthroscopy. 2015;31(6):1156–1166.e8.

    Article  PubMed  Google Scholar 

  134. Ryu KN, et al. Adhesive capsulitis of the shoulder joint: usefulness of dynamic sonography. J Ultrasound Med. 1993;12(8):445–9.

    Article  CAS  PubMed  Google Scholar 

  135. Lee JC, et al. Adhesive capsulitis: sonographic changes in the rotator cuff interval with arthroscopic correlation. Skelet Radiol. 2005;34(9):522–7.

    Article  CAS  Google Scholar 

  136. Homsi C, et al. Ultrasound in adhesive capsulitis of the shoulder: is assessment of the coracohumeral ligament a valuable diagnostic tool? Skelet Radiol. 2006;35(9):673–8.

    Article  Google Scholar 

  137. Redler LH, Dennis ER. Treatment of adhesive capsulitis of the shoulder. J Am Acad Orthop Surg. 2019;27(12):e544–54.

    Article  PubMed  Google Scholar 

  138. Struyf F, Meeus M. Current evidence on physical therapy in patients with adhesive capsulitis: what are we missing? Clin Rheumatol. 2014;33(5):593–600.

    Article  PubMed  Google Scholar 

  139. Lee S, et al. The effects of extracorporeal shock wave therapy on pain and range of motion in patients with adhesive capsulitis. J Phys Ther Sci. 2017;29(11):1907–9.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Saltychev M, et al. Effectiveness of Hydrodilatation in adhesive capsulitis of shoulder: a systematic review and meta-analysis. Scand J Surg. 2018;107(4):285–93.

    Article  CAS  PubMed  Google Scholar 

  141. Griesser MJ, et al. Adhesive capsulitis of the shoulder: a systematic review of the effectiveness of intra-articular corticosteroid injections. J Bone Joint Surg Am. 2011;93(18):1727–33.

    Article  PubMed  Google Scholar 

  142. Jain TK, Sharma NK. The effectiveness of physiotherapeutic interventions in treatment of frozen shoulder/adhesive capsulitis: a systematic review. J Back Musculoskelet Rehabil. 2014;27(3):247–73.

    Article  PubMed  Google Scholar 

  143. Porcellini G, et al. Intra-articular glenohumeral injections of HYADD(R)4-G for the treatment of painful shoulder osteoarthritis: a prospective multicenter, open-label trial. Joints. 2015;3(3):116–21.

    Article  PubMed  Google Scholar 

  144. Silverstein E, Leger R, Shea KP. The use of intra-articular hylan G-F 20 in the treatment of symptomatic osteoarthritis of the shoulder: a preliminary study. Am J Sports Med. 2007;35(6):979–85.

    Article  PubMed  Google Scholar 

  145. Noel E, et al. Efficacy and safety of Hylan G-F 20 in shoulder osteoarthritis with an intact rotator cuff. Open-label prospective multicenter study. Joint Bone Spine. 2009;76(6):670–3.

    Article  CAS  PubMed  Google Scholar 

  146. Di Giacomo G, de Gasperis N. Hyaluronic acid intra-articular injections in patients affected by moderate to severe Glenohumeral osteoarthritis: a prospective randomized study. Joints. 2017;5(3):138–42.

    Article  PubMed  PubMed Central  Google Scholar 

  147. McKee MD, et al. NASHA hyaluronic acid for the treatment of shoulder osteoarthritis: a prospective, single-arm clinical trial. Med Devices (Auckl). 2019;12:227–34.

    CAS  Google Scholar 

  148. Merolla G, et al. Efficacy of Hylan G-F 20 versus 6-methylprednisolone acetate in painful shoulder osteoarthritis: a retrospective controlled trial. Musculoskelet Surg. 2011;95(3):215–24.

    Article  PubMed  Google Scholar 

  149. Kwon YW, Eisenberg G, Zuckerman JD. Sodium hyaluronate for the treatment of chronic shoulder pain associated with glenohumeral osteoarthritis: a multicenter, randomized, double-blind, placebo-controlled trial. J Shoulder Elb Surg. 2013;22(5):584–94.

    Article  Google Scholar 

  150. Blaine T, et al. Treatment of persistent shoulder pain with sodium hyaluronate: a randomized, controlled trial. A multicenter study. J Bone Joint Surg Am. 2008;90(5):970–9.

    Article  PubMed  Google Scholar 

  151. Centeno CJ, et al. A prospective multi-site registry study of a specific protocol of autologous bone marrow concentrate for the treatment of shoulder rotator cuff tears and osteoarthritis. J Pain Res. 2015;8:269–76.

    PubMed  PubMed Central  Google Scholar 

  152. Striano RD, et al. Refractory shoulder pain with osteoarthritis, and rotator cuff tear, treated with micro-fragmented adipose tissue. J Orthop Spine Sports Med. 2018;2(1):014.

    Google Scholar 

  153. Jong BY, Goel DP. Biologic options for Glenohumeral arthritis. Clin Sports Med. 2018;37(4):537–48.

    Article  PubMed  Google Scholar 

  154. Wang W, et al. Effectiveness of corticosteroid injections in adhesive capsulitis of shoulder: a meta-analysis. Medicine (Baltimore). 2017;96(28):e7529.

    Article  CAS  Google Scholar 

  155. Xiao RC, et al. Corticosteroid injections for adhesive capsulitis: a review. Clin J Sport Med. 2017;27(3):308–20.

    Article  PubMed  Google Scholar 

  156. Paruthikunnan SM, et al. Intra-articular steroid for adhesive capsulitis: does hydrodilatation give any additional benefit? A randomized control trial. Skelet Radiol. 2019.

    Google Scholar 

  157. Yoon SH, et al. Optimal dose of intra-articular corticosteroids for adhesive capsulitis: a randomized, triple-blind, placebo-controlled trial. Am J Sports Med. 2013;41(5):1133–9.

    Article  PubMed  Google Scholar 

  158. Shang X, et al. Intra-articular versus subacromial corticosteroid injection for the treatment of adhesive capsulitis: a meta-analysis and systematic review. Biomed Res Int. 2019;2019:1274790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kim YS, et al. Comparison of high- and low-dose intra-articular triamcinolone acetonide injection for treatment of primary shoulder stiffness: a prospective randomized trial. J Shoulder Elb Surg. 2017;26(2):209–15.

    Article  Google Scholar 

  160. Prestgaard T, et al. Ultrasound-guided intra-articular and rotator interval corticosteroid injections in adhesive capsulitis of the shoulder: a double-blind, sham-controlled randomized study. Pain. 2015;156(9):1683–91.

    Article  CAS  PubMed  Google Scholar 

  161. Ogul H, et al. Ultrasound-guided shoulder MR arthrography: comparison of rotator interval and posterior approach. Clin Imaging. 2014;38(1):11–7.

    Article  PubMed  Google Scholar 

  162. Sun Y, et al. The effect of corticosteroid injection into rotator interval for early frozen shoulder: a randomized controlled trial. Am J Sports Med. 2018;46(3):663–70.

    Article  CAS  PubMed  Google Scholar 

  163. Barman A, et al. Single intra-articular platelet-rich plasma versus corticosteroid injections in the treatment of adhesive capsulitis of the shoulder: a cohort study. Am J Phys Med Rehabil. 2019;98(7):549–57.

    Article  PubMed  Google Scholar 

  164. Lin J. Platelet-rich plasma injection in the treatment of frozen shoulder: a randomized controlled trial with 6-month follow-up. Int J Clin Pharmacol Ther. 2018;56(8):366–71.

    Article  CAS  PubMed  Google Scholar 

  165. Sethi PM, Kingston S, Elattrache N. Accuracy of anterior intra-articular injection of the glenohumeral joint. Arthroscopy. 2005;21(1):77–80.

    Article  PubMed  Google Scholar 

  166. Shao X, et al. Transcoracoacromial ligament Glenohumeral injection technique: accuracy of 116 injections in idiopathic adhesive capsulitis. Arthroscopy. 2018;34(8):2337–44.

    Article  PubMed  Google Scholar 

  167. Catalano OA, et al. MR arthrography of the glenohumeral joint: modified posterior approach without imaging guidance. Radiology. 2007;242(2):550–4.

    Article  PubMed  Google Scholar 

  168. Patel DN, et al. Comparison of ultrasound-guided versus blind glenohumeral injections: a cadaveric study. J Shoulder Elb Surg. 2012;21(12):1664–8.

    Article  Google Scholar 

  169. Esenyel CZ, et al. Accuracy of anterior glenohumeral injections: a cadaver study. Arch Orthop Trauma Surg. 2010;130(3):297–300.

    Article  PubMed  Google Scholar 

  170. Souza PM, et al. Arthrography of the shoulder: a modified ultrasound guided technique of joint injection at the rotator interval. Eur J Radiol. 2010;74(3):e29–32.

    Article  PubMed  Google Scholar 

  171. Choudur HN, Ellins ML. Ultrasound-guided gadolinium joint injections for magnetic resonance arthrography. J Clin Ultrasound. 2011;39(1):6–11.

    Article  PubMed  Google Scholar 

  172. Gokalp G, Dusak A, Yazici Z. Efficacy of ultrasonography-guided shoulder MR arthrography using a posterior approach. Skelet Radiol. 2010;39(6):575–9.

    Article  Google Scholar 

  173. Ogul H, et al. Magnetic resonance arthrography of the glenohumeral joint: ultrasonography-guided technique using a posterior approach. Eurasian J Med. 2012;44(2):73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Plancher KD, et al. The spinoglenoid ligament. Anatomy, morphology, and histological findings. J Bone Joint Surg Am. 2005;87(2):361–5.

    Article  PubMed  Google Scholar 

  175. Aktekin M, et al. The significance of the neurovascular structures passing through the spinoglenoid notch. Neurosciences (Riyadh). 2003;8(4):222–4.

    Google Scholar 

  176. Lichtenberg S, Magosch P, Habermeyer P. Compression of the suprascapular nerve by a ganglion cyst of the spinoglenoid notch: the arthroscopic solution. Knee Surg Sports Traumatol Arthrosc. 2004;12(1):72–9.

    Article  PubMed  Google Scholar 

  177. Steinwachs MR, et al. A ganglion of the spinoglenoid notch. J Shoulder Elb Surg. 1998;7(5):550–4.

    Article  CAS  Google Scholar 

  178. Phillips CJ, Field AC, Field LD. Transcapsular decompression of shoulder ganglion cysts. Arthrosc Tech. 2018;7(12):e1263–7.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tung GA, et al. MR imaging and MR arthrography of paraglenoid labral cysts. AJR Am J Roentgenol. 2000;174(6):1707–15.

    Article  CAS  PubMed  Google Scholar 

  180. Ferretti A, De Carli A, Fontana M. Injury of the suprascapular nerve at the spinoglenoid notch. The natural history of infraspinatus atrophy in volleyball players. Am J Sports Med. 1998;26(6):759–63.

    Article  CAS  PubMed  Google Scholar 

  181. Chiou HJ, et al. Alternative and effective treatment of shoulder ganglion cyst: ultrasonographically guided aspiration. J Ultrasound Med. 1999;18(8):531–5.

    Article  CAS  PubMed  Google Scholar 

  182. Sangam MR, et al. A study on the morphology of the suprascapular notch and its distance from the glenoid cavity. J Clin Diagn Res. 2013;7(2):189–92.

    PubMed  PubMed Central  Google Scholar 

  183. Rengachary SS, et al. Suprascapular entrapment neuropathy: a clinical, anatomical, and comparative study. Part 2: anatomical study. Neurosurgery. 1979;5(4):447–51.

    Article  CAS  PubMed  Google Scholar 

  184. Martinoli C, et al. US of the shoulder: non-rotator cuff disorders. Radiographics. 2003;23(2):381–401. quiz 534

    Article  PubMed  Google Scholar 

  185. Boykin RE, et al. Suprascapular neuropathy. J Bone Joint Surg Am. 2010;92(13):2348–64.

    Article  PubMed  Google Scholar 

  186. Urguden M, et al. Is there any effect of suprascapular notch type in iatrogenic suprascapular nerve lesions? An anatomical study. Knee Surg Sports Traumatol Arthrosc. 2004;12(3):241–5.

    Article  PubMed  Google Scholar 

  187. Bayramoglu A, et al. Variations in anatomy at the suprascapular notch possibly causing suprascapular nerve entrapment: an anatomical study. Knee Surg Sports Traumatol Arthrosc. 2003;11(6):393–8.

    Article  CAS  PubMed  Google Scholar 

  188. Blasco L, et al. Ultrasound-guided proximal and distal suprascapular nerve blocks: a comparative cadaveric study. Pain Med. 2019;21(6):1240–7.

    Google Scholar 

  189. Taskaynatan MA, et al. Accuracy of ultrasound-guided suprascapular nerve block measured with neurostimulation. Rheumatol Int. 2012;32(7):2125–8.

    Article  PubMed  Google Scholar 

  190. Laumonerie P, et al. Ultrasound-guided versus landmark-based approach to the distal suprascapular nerve block: a comparative cadaveric study. Arthroscopy. 2019;35(8):2274–81.

    Article  PubMed  Google Scholar 

  191. Laumonerie P, et al. Distal suprascapular nerve block-do it yourself: cadaveric feasibility study. J Shoulder Elb Surg. 2019;28(7):1291–7.

    Article  Google Scholar 

  192. van de Pol D, et al. High prevalence of self-reported symptoms of digital ischemia in elite male volleyball players in the Netherlands: a cross-sectional national survey. Am J Sports Med. 2012;40(10):2296–302.

    Article  PubMed  Google Scholar 

  193. Vlychou M, et al. Embolisation of a traumatic aneurysm of the posterior circumflex humeral artery in a volleyball player. Br J Sports Med. 2001;35(2):136–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Atema JJ, et al. Posterior circumflex humeral artery injury with distal embolisation in professional volleyball players: a discussion of three cases. Eur J Vasc Endovasc Surg. 2012;44(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  195. Reekers JA, et al. Traumatic aneurysm of the posterior circumflex humeral artery: a volleyball player's disease? J Vasc Interv Radiol. 1993;4(3):405–8.

    Article  CAS  PubMed  Google Scholar 

  196. Ligh CA, Schulman BL, Safran MR. Case reports: unusual cause of shoulder pain in a collegiate baseball player. Clin Orthop Relat Res. 2009;467(10):2744–8.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Kee ST, et al. Ischemia of the throwing hand in major league baseball pitchers: embolic occlusion from aneurysms of axillary artery branches. J Vasc Interv Radiol. 1995;6(6):979–82.

    Article  CAS  PubMed  Google Scholar 

  198. Nuber GW, et al. Arterial abnormalities of the shoulder in athletes. Am J Sports Med. 1990;18(5):514–9.

    Article  CAS  PubMed  Google Scholar 

  199. McClelland D, Hoy G. A case of quadrilateral space syndrome with involvement of the long head of the triceps. Am J Sports Med. 2008;36(8):1615–7.

    Article  PubMed  Google Scholar 

  200. Perlmutter GS. Axillary nerve injury. Clin Orthop Relat Res. 1999;368:28–36.

    Article  Google Scholar 

  201. Lo IK, Burkhart SS, Parten PM. Surgery about the coracoid: neurovascular structures at risk. Arthroscopy. 2004;20(6):591–5.

    Article  PubMed  Google Scholar 

  202. Chen H, Narvaez VR. Ultrasound-guided quadrilateral space block for the diagnosis of quadrilateral syndrome. Case Rep Orthop. 2015;2015:378627.

    PubMed  PubMed Central  Google Scholar 

  203. Wolfe SW, Wickiewicz TL, Cavanaugh JT. Ruptures of the pectoralis major muscle. An anatomic and clinical analysis. Am J Sports Med. 1992;20(5):587–93.

    Article  CAS  PubMed  Google Scholar 

  204. Fung L, et al. Three-dimensional study of pectoralis major muscle and tendon architecture. Clin Anat. 2009;22(4):500–8.

    Article  PubMed  Google Scholar 

  205. Lee YK, et al. US and MR imaging of pectoralis major injuries. Radiographics. 2017;37(1):176–89.

    Article  PubMed  Google Scholar 

  206. Chiavaras MM, et al. Pectoralis major tears: anatomy, classification, and diagnosis with ultrasound and MR imaging. Skelet Radiol. 2015;44(2):157–64.

    Article  Google Scholar 

  207. Provencher MT, et al. Injuries to the pectoralis major muscle: diagnosis and management. Am J Sports Med. 2010;38(8):1693–705.

    Article  PubMed  Google Scholar 

  208. ElMaraghy AW, Devereaux MW. A systematic review and comprehensive classification of pectoralis major tears. J Shoulder Elb Surg. 2012;21(3):412–22.

    Article  Google Scholar 

  209. Tietjen R. Closed injuries of the pectoralis major muscle. J Trauma. 1980;20(3):262–4.

    Article  CAS  PubMed  Google Scholar 

  210. Rehman A, Robinson P. Sonographic evaluation of injuries to the pectoralis muscles. AJR Am J Roentgenol. 2005;184(4):1205–11.

    Article  PubMed  Google Scholar 

  211. Kircher J, et al. Surgical and nonsurgical treatment of total rupture of the pectoralis major muscle in athletes: update and critical appraisal. Open Access J Sports Med. 2010;1:201–5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Lueders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lueders, D.R., Lloyd, A.R., Schroeder, A.N. (2022). Shoulder. In: El Miedany, Y. (eds) Musculoskeletal Ultrasound-Guided Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-98256-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98256-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98255-3

  • Online ISBN: 978-3-030-98256-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics