Skip to main content

Deep Reinforcement Learning for Mobile Edge Computing Systems

  • Chapter
  • First Online:
Broadband Communications, Computing, and Control for Ubiquitous Intelligence

Part of the book series: Wireless Networks ((WN))

  • 403 Accesses

Abstract

In mobile edge computing (MEC) systems, network entities and mobile devices need to make decisions to enable efficient use of network and computational resources. Such decision making can be challenging because the environment in MEC systems can be complex and involve time-varying system dynamics. To address such challenges, deep reinforcement learning (DRL) emerges as a promising method. It enables agents (e.g., network entities, mobile devices) to learn the optimal decision-making policy through interacting with the environment. In this chapter, we describe how DRL can be incorporated into MEC systems for improving the system performance. We first give an overview of DRL techniques. Then, we present a case study on the task offloading problem in MEC systems. In particular, we focus on the unknown and time-varying load level dynamics at the edge nodes and formulate a task offloading problem for minimizing the task delay and the ratio of dropped tasks. We propose a deep Q-learning-based algorithm that enables the mobile devices to make their task offloading decisions in a decentralized fashion with local information. This algorithm incorporates double deep Q-network (DQN) and dueling DQN techniques for enhancing the algorithm performance. Simulation results demonstrate that the proposed algorithm can reduce the task delay and ratio of dropped tasks significantly when compared with the existing methods. Finally, we outline several challenges and future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This setting is for the simplicity of mathematical presentation. For any task k m(t) that has been dropped, the value of Delaym(t) will not be taken into account in our proposed algorithm according to Sects. 9.3.2 and 9.3.3. Meanwhile, the delay of a dropped task is not accounted when we evaluate the average delay of the tasks with our proposed algorithm and benchmark methods in Sect. 9.3.4.

  2. 2.

    The weights of the connections between the A&V layer and the output layer as well as the bias of the neurons in the output layer are given and fixed. Hence, we do not include them in the network parameter vector Īø m, as the vector Īø m includes the parameters that are adjustable through learning in the DQL-based algorithm.

References

  1. Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutorials 19(4), 2322ā€“2358, Fourth quarter (2017)

    Google ScholarĀ 

  2. P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, T. Taleb, Survey on multi-access edge computing for Internet of things realization. IEEE Commun. Surv. Tutorials 20(4), 2961ā€“2991 (2018)

    ArticleĀ  Google ScholarĀ 

  3. F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the Internet of things, in Proc. ACM SIGCOMM Workshop on Mobile Cloud Computing (MCC), Helsinki, August 2012

    Google ScholarĀ 

  4. Z. Sanaei, S. Abolfazli, A. Gani, R. Buyya, Heterogeneity in mobile cloud computing: taxonomy and open challenges. IEEE Commun. Surv. Tutorials 16(1), 369ā€“392, First quarter (2014)

    Google ScholarĀ 

  5. T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, D.O. Wu, Edge computing in industrial Internet of things: architecture, advances and challenges. IEEE Commun. Surv. Tutorials 22(4), 2462ā€“2488, Fourth quarter (2020)

    Google ScholarĀ 

  6. P. Ranaweera, A.D. Jurcut, M. Liyanage, Survey on multi-access edge computing security and privacy. IEEE Commun. Surv. Tutorials 23(2), 1078ā€“1124, Second quarter (2021)

    Google ScholarĀ 

  7. T. Chen, Q. Ling, G.B. Giannakis, An online convex optimization approach to proactive network resource allocation. IEEE Trans. Signal Process. 65(24), 6350ā€“6364 (2017)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  8. H. Shah-Mansouri, V.W.S. Wong, Hierarchical fog-cloud computing for IoT systems: a computation offloading game. IEEE Internet Things J. 5(4), 3246ā€“3257 (2018)

    ArticleĀ  Google ScholarĀ 

  9. V. FranƧois-Lavet, P. Henderson, R. Islam, M.G. Bellemare, J. Pineau, An introduction to deep reinforcement learning. Found. Trends Mach. Learn. 11(3ā€“4), 219ā€“354 (2018)

    ArticleĀ  Google ScholarĀ 

  10. X. Wang, Y. Han, V.C.M. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge computing and deep learning: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(2), 869ā€“904, Second quarter (2020)

    Google ScholarĀ 

  11. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2nd edn. (MIT Press, Cambridge, MA, 2018)

    MATHĀ  Google ScholarĀ 

  12. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, Human-level control through deep reinforcement learning. Nature 518(7540), 529ā€“533 (2015)

    ArticleĀ  Google ScholarĀ 

  13. H. van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-learning, in Proc. AAAI Conf. on Artificial Intelligence, Phoenix, AZ, May 2016

    Google ScholarĀ 

  14. Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, N. de Freitas, Dueling network architectures for deep reinforcement learning, in Proc. Intā€™l Conf. on Machine Learning (ICML), New York City, NY, June 2016

    Google ScholarĀ 

  15. M.G. Bellemare, W. Dabney, R. Munos, A distributional perspective on reinforcement learning, in Proc. Intā€™l Conf. on Machine Learning (ICML), Sydney, August 2017

    Google ScholarĀ 

  16. T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep reinforcement learning. Preprint, arXiv:1509.02971, July 2019

    Google ScholarĀ 

  17. G. Barth-Maron, M.W. Hoffman, D. Budden, W. Dabney, D. Horgan, T.B. Dhruva, A. Muldal, N. Heess, T. Lillicrap, Distributed distributional deterministic policy gradients, in Proc. Intā€™l Conf. on Learning Representations (ICLR), Vancouver, April 2018

    Google ScholarĀ 

  18. V. Mnih, A.P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in Proc. Intā€™l Conf. on Machine Learning (ICML), New York City, NY, June 2016

    Google ScholarĀ 

  19. Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, N. de Freitas, Sample efficient actor-critic with experience replay. Preprint, arXiv:1611.01224, July 2017

    Google ScholarĀ 

  20. T. Haarnoja, A. Zhou, P. Abbeel, S. Levine, Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor, in Proc. Intā€™l Conf. on Machine Learning (ICML), Stockholm, June 2018

    Google ScholarĀ 

  21. S. Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in actor-critic methods, in Proc. Intā€™l Conf. on Machine Learning (ICML), Stockholm, June 2018

    Google ScholarĀ 

  22. J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy optimization, in Proc. Intā€™l Conf. on Machine Learning (ICML), Lille, June 2015

    Google ScholarĀ 

  23. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy optimization algorithms. Preprint, arXiv:1707.06347, August 2017

    Google ScholarĀ 

  24. C.B. Browne, E. Powley, D. Whitehouse, S.M. Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intel. AI 4(1), 1ā€“43 (2012)

    Google ScholarĀ 

  25. D. Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484ā€“489 (2016)

    ArticleĀ  Google ScholarĀ 

  26. A. Plaat, W. Kosters, M. Preuss, Model-based deep reinforcement learning for high-dimensional problems, a survey. Preprint, arXiv:2008.05598, December 2020

    Google ScholarĀ 

  27. N.C. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, D.I. Kim, Applications of deep reinforcement learning in communications and networking: a survey. IEEE Commun. Surv. Tutorials 21(4), 3133ā€“3174, Fourth quarter (2019)

    Google ScholarĀ 

  28. M. Tang, V.W.S. Wong, Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mobile Comput. 21(6), 1985ā€“1997 (2020)

    ArticleĀ  Google ScholarĀ 

  29. J. Liu, Y. Mao, J. Zhang, K.B. Letaief, Delay-optimal computation task scheduling for mobile-edge computing systems, in Proc. IEEE Intā€™l Symp. on Information Theory (ISIT), Barcelona, July 2016

    Google ScholarĀ 

  30. X. Lyu, W. Ni, H. Tian, R.P. Liu, X. Wang, G.B. Giannakis, A. Paulraj, Distributed online optimization of fog computing for selfish devices with out-of-date information. IEEE Trans. Wirel. Commun. 17(11), 7704ā€“7717 (2018)

    ArticleĀ  Google ScholarĀ 

  31. L. Yang, H. Zhang, X. Li, H. Ji, V. Leung, A distributed computation offloading strategy in small-cell networks integrated with mobile edge computing. IEEE/ACM Trans. Netw. 26(6), 2762ā€“2773 (2018)

    ArticleĀ  Google ScholarĀ 

  32. A.K. Parekh, R.G. Gallager, A generalized processor sharing approach to flow control in integrated services networks: the single-node case. IEEE/ACM Trans. Netw. 1(3), 344ā€“357 (1993)

    ArticleĀ  Google ScholarĀ 

  33. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)

    MATHĀ  Google ScholarĀ 

  34. J.L.D. Neto, S.-Y. Yu, D.F. Macedo, M.S. Nogueira, R. Langar, S. Secci, ULOOF: a user level online offloading framework for mobile edge computing. IEEE Trans. Mobile Comput. 17(11), 2660ā€“2674 (2018)

    ArticleĀ  Google ScholarĀ 

  35. C. Wang, C. Liang, F.R. Yu, Q. Chen, L. Tang, Computation offloading and resource allocation in wireless cellular networks with mobile edge computing. IEEE Trans. Wirel. Commun. 16(8), 4924ā€“4938 (2017)

    ArticleĀ  Google ScholarĀ 

  36. Speedtest Intelligence, Speedtest global index: Canada average mobile upload speed based on March 2021 data, https://www.speedtest.net/reports/canada/. Accessed 25 June 2021

  37. X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, R.P. Liu, Energy-efficient admission of delay-sensitive tasks for mobile edge computing. IEEE Trans. Commun. 66(6), 2603ā€“2616 (2018)

    ArticleĀ  Google ScholarĀ 

  38. J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning under concept drift: a review. IEEE Trans. Knowl. Data Eng. 31(12), 2346ā€“2363 (2019)

    ArticleĀ  Google ScholarĀ 

  39. A. Xie, J. Harrison, C. Finn, Deep reinforcement learning amidst lifelong non-stationarity. Preprint, arXiv:2006.10701, June 2020

    Google ScholarĀ 

  40. V. Lomonaco, K. Desai, E. Culurciello, D. Maltoni, Continual reinforcement learning in 3D non-stationary environments, in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, June 2020

    Google ScholarĀ 

  41. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, Q. He, A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43ā€“76 (2021)

    ArticleĀ  Google ScholarĀ 

  42. S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding, in Proc. Intā€™l Conf. on Machine Learning (ICML), New York City, NY, June 2016

    Google ScholarĀ 

  43. Z. Chen, B. Liu, Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 12(3), 1ā€“207 (2018)

    Google ScholarĀ 

  44. W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao, Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 22(3), 2031ā€“2063, Third quarter (2020)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to VincentĀ W. S. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, M., Wong, V.S. (2022). Deep Reinforcement Learning for Mobile Edge Computing Systems. In: Cai, L., Mark, B.L., Pan, J. (eds) Broadband Communications, Computing, and Control for Ubiquitous Intelligence. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-98064-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98064-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98063-4

  • Online ISBN: 978-3-030-98064-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics