Skip to main content

State Transition Field: A New Framework for Mobile Dynamic Caching

  • Chapter
  • First Online:
Broadband Communications, Computing, and Control for Ubiquitous Intelligence

Part of the book series: Wireless Networks ((WN))

  • 364 Accesses

Abstract

In this chapter, we present research on dynamic probabilistic caching. First, we establish a theoretic model, i.e., the state transition field (STF) theory. The STF characterizes the dynamic change of the cache state distribution in the vector space as a result of content requests and replacements. We consider the case of time-invariant content popularity first and show that the STF can be used to analyze replacement schemes. Then, in the case of time-varying content popularity, we investigate the impact of time-varying content popularity on the instantaneous STF and how such impact affects the performance of a replacement scheme. We show that many metrics, such as instantaneous state caching probability and average cache hit probability over an arbitrary sequence of requests, can be found using the instantaneous STF. Last, we design dynamic probabilistic caching that converges to the optimal content caching probabilities under time-invariant content popularity and adapts to the time-varying instantaneous content popularity under time-varying content popularity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we ignore the cases when the cache is not full.

  2. 2.

    We use lower-case bold letters for vectors, upper-case bold letters for matrices, and calligraphic letters for sets. The superscript (â‹…)(n) is used on letters related to the nth request or replacement. Greek letters are used to represent various probabilities.

References

  1. X. Wang, M. Chen, T. Taleb, A. Ksentini, V.C. Leung, Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 131–139 (2014)

    Article  Google Scholar 

  2. S. Zhang, W. Quan, J. Li, W. Shi, P. Yang, X. Shen, Air-ground integrated vehicular network slicing with content pushing and caching. IEEE J. Sel. Areas Commun. 36(9), 2114–2127 (2018)

    Article  Google Scholar 

  3. J. Gao, L. Zhao, L. Sun, Probabilistic caching as mixed strategies in spatially-coupled edge caching, in Proc. 29th Biennial Symp. Commun., Toronto (2018)

    Google Scholar 

  4. S. Müller, O. Atan, M. van der Schaar, A. Klein, Context-aware proactive content caching with service differentiation in wireless networks. IEEE Trans. Wireless Commun. 16(2), 1024–1036 (2017)

    Article  Google Scholar 

  5. K. Li, C. Yang, Z. Chen, M. Tao, Optimization and analysis of probabilistic caching in N -tier heterogeneous networks. IEEE Trans. Wireless Commun. 17(2), 1283–1297 (2018)

    Article  Google Scholar 

  6. E.K. Markakis, K. Karras, A. Sideris, G. Alexiou, E. Pallis, Computing, caching, and communication at the edge: The cornerstone for building a versatile 5G ecosystem. IEEE Commun. Mag. 55(11), 152–157 (2017)

    Article  Google Scholar 

  7. M. Tang, L. Gao, J. Huang, Enabling edge cooperation in tactile Internet via 3C resource sharing. IEEE J. Sel. Areas Commun. 36(11), 2444–2454 (2018)

    Article  Google Scholar 

  8. S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, X. Shen, Cooperative edge caching in user-centric clustered mobile networks. IEEE Trans. Mobile Comput. 17(8), 1791–1805 (2018)

    Article  Google Scholar 

  9. M. Emara, H. Elsawy, S. Sorour, S. Al-Ghadhban, M.S. Alouini, T.Y. Al-Naffouri, Optimal caching in 5G networks with opportunistic spectrum access. IEEE Trans. Wireless Commun. 17(7), 4447–4461 (2018)

    Article  Google Scholar 

  10. T.X. Vu, S. Chatzinotas, B. Ottersten, T.Q. Duong, Energy minimization for cache-assisted content delivery networks with wireless backhaul. IEEE Wireless Commun. Lett. 7(3), 332–335 (2018)

    Article  Google Scholar 

  11. G. Lee, I. Jang, S. Pack, X. Shen, FW-DAS: fast wireless data access scheme in mobile networks. IEEE Trans. Wireless Commun. 13(8), 4260–4272 (2014)

    Article  Google Scholar 

  12. E. Bastug, M. Bennis, M. Debbah, Living on the edge: the role of proactive caching in 5G wireless networks. IEEE Commun. Mag. 52(8), 82–89 (2014)

    Article  Google Scholar 

  13. J. Qiao, Y. He, X. Shen, Proactive caching for mobile video streaming in millimeter wave 5G networks. IEEE Trans. Wireless Commun. 15(10), 7187–7198 (2016)

    Article  Google Scholar 

  14. S.O. Somuyiwa, A. György, D. Gündüz, A reinforcement-learning approach to proactive caching in wireless networks. IEEE J. Sel. Areas Commun. 36(6), 1331–1344 (2018)

    Article  Google Scholar 

  15. R. Pedarsani, M.A. Maddah-Ali, U. Niesen, Online coded caching. IEEE/ACM Trans. Netw. 24(2), 836–845 (2016)

    Article  Google Scholar 

  16. S. Tarnoi, K. Suksomboon, W. Kumwilaisak, Y. Ji, Performance of probabilistic caching and cache replacement policies for content-centric networks, in Proc. 39th IEEE Conf. Local Computer Networks, Edmonton (2014), pp. 99–106

    Google Scholar 

  17. W. Bao, D. Yuan, K. Shi, W. Ju, A.Y. Zomaya, Ins and outs: optimal caching and re-caching policies in mobile networks, in Proc. the 18th ACM Mobihoc, New York (2018), pp. 41–50

    Google Scholar 

  18. I. Psaras, W.K. Chai, G. Pavlou, In-network cache management and resource allocation for information-centric networks. IEEE Trans. Parallel Distrib. Syst. 25(11), 2920–2931 (2014)

    Article  Google Scholar 

  19. J. Gao, L. Zhao, X. Shen, The study of dynamic caching via state transition field—the case of time-invariant popularity. IEEE Trans. Wireless Commun. 18(12), 5924–5937

    Google Scholar 

  20. J. Gao, L. Zhao, X. Shen, The study of dynamic caching via state transition field—the case of time-varying popularity. IEEE Trans. Wireless Commun. 18(12), 5938–5951 (2019)

    Article  Google Scholar 

  21. J. Gao, S. Zhang, L. Zhao, X. Shen, The design of dynamic probabilistic caching with time-varying content popularity. IEEE Trans. Mobile Comput. 20(4), 1672–1684 (2021)

    Article  Google Scholar 

  22. S. Tarnoi, V. Suppakitpaisarn, W. Kumwilaisak, Y. Ji, Performance analysis of probabilistic caching scheme using Markov chains, in Proc. 40th IEEE Conf. Local Computer Networks, Clearwater Beach (2015), pp. 46–54

    Google Scholar 

  23. G.S. Paschos, G. Iosifidis, M. Tao, D. Towsley, G. Caire, The role of caching in future communication systems and networks. IEEE J. Sel. Areas Commun. 36(6), 1111–1125 (2018)

    Article  Google Scholar 

  24. C. Robert, G. Casella, Monte Carlo Statistical Methods (Springer Science & Business Media, New York, 2013)

    MATH  Google Scholar 

  25. S. Boyd, P. Diaconis, L. Xiao, Fastest mixing Markov chain on a graph. SIAM Rev. 46(4), 667–689 (2004)

    Article  MathSciNet  Google Scholar 

  26. N. Carlsson, D. Eager, Ephemeral content popularity at the edge and implications for on-demand caching. IEEE Trans. Parallel Distrib. Syst. 28(6), 1621–1634 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, J., Li, M., Ling, X., Zhao, L., Shen, X.(. (2022). State Transition Field: A New Framework for Mobile Dynamic Caching. In: Cai, L., Mark, B.L., Pan, J. (eds) Broadband Communications, Computing, and Control for Ubiquitous Intelligence. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-98064-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98064-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98063-4

  • Online ISBN: 978-3-030-98064-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics