Skip to main content

Disease Diagnosis with Medical Imaging Using Deep Learning

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 439))

Included in the following conference series:

Abstract

Faster, augmented, remote and digital diagnostic prediction models represent the future of preventive and affordable medical healthcare for patients world-wide. A premature detection can help doctors to prevent, reduce or stop the disease evolution over time. This paper proposes Deep Learning methods for diagnosis detection starting from an existing ResUNet architecture and over that creating a new one through replacing ResUNet blocks with a kind of Inception blocks. The proposal is applied over a semantic segmentation task offering a comparative study seeing the differences given the proposed architecture. For this study, also we used Transfer Learning technique improve to speed up and increase the accuracy of detecting and localizing brain tumors based on magnetic resonance imaging (MRI) scans to help in early diagnosis of tumors which would primordially be a life saver. This paper explores a new detection architecture for imagistic diagnostic forecast and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accenture Homepage. https://www.accenture.com/us-en/insight-artificial-intelligence-healthcare%C2%A0 Accessed 30 Sep 2021

  2. Ethics and governance of artificial intelligence for health.https://www.who.int/publications/i/item/9789240029200. Accessed 30 Sep 2021

  3. Fan, R., Zhang, N., Yang, L., Ke, J., Zhao, D., Cui, Q.: AI-based prediction for the risk of coronary heart disease among patients with type 2 diabetes mellitus. Sci. Rep. 10, 14457 (2020)

    Google Scholar 

  4. Yan, Y., Zhang, J.W., Zang, G.Y., Pu, J.: The primary use of artificial intelligence in cardiovascular diseases: what kind of potential role does artificial intelligence play in future medicine? J. Geriatr. Cardiol. 16(8), 585–591 (2019)

    Google Scholar 

  5. Chaki, J., Thillai, G.S., Cidham, S.K., Theertan, S.A.: Machine learning and artificial intelligence based diabetes mellitus detection and self-management: a systematic review. J. King Saud. Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.06.013

  6. Hao, K.: What is machine learning? Machine-learning algorithms find and apply patterns in data. And they pretty much run the world. MIT Technology Revies, 17 November 2017. https://www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-anotherflowchart/ Accessed 30 Sep 2021

  7. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 5(8), 1798–1828 (2013)

    Google Scholar 

  8. Schmidhuber, J.: Deep Learning in Neural Networks: an overview. Neural Netw. (2015). https://doi.org/10.1016/j.neunet.2014.09.003

  9. Bengio, Y., LeCun, Y., Hinton, G.: Deep Learning. Nature (2015). https://doi.org/10.1038/nature14539

  10. Shapiro, L.G., Stockman, G.C.: Computer Vision, pp 279–325, Prentice-Hall, New Jersey (2001). ISBN 0-13-030796-3

    Google Scholar 

  11. Asgari Taghanaki, S., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G.: Deep semantic segmentation of natural and medical images: a review. Artif. Intell. Rev. 54(1), 137–178 (2020). https://doi.org/10.1007/s10462-020-09854-1

    Article  Google Scholar 

  12. Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley, Boston (1992)

    Google Scholar 

  13. Çallı, E., et al.: Deep learning for chest X-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)

    Google Scholar 

  14. Garillos-Manliguez, C.A., et al.: multimodal deep learning and visible-light and hyperspectral imaging for fruit maturity estimation. Sensors 21(4), 1288 (2021). https://doi.org/10.3390/s21041288

  15. Lundervold, A.S., et al.: An overview of deep learning in medical imaging focusing on MRI (2018). https://doi.org/10.1016/j.zemedi.2018.11.002

  16. Arabi, H., et al.: The promise of artificial intelligence and deep learning in PET and SPECT imaging. Phys. Med. 83, 122–137 (2021). https://doi.org/10.1016/j.ejmp.2021.03.008

  17. Würfl, T., et al.: Deep learning computed tomography. In: Conference: International Conference on Medical Image Computing and Computer-Assisted Intervention (2016). https://doi.org/10.1007/978-3-319-46726-9_50

  18. Guo, Y., Liu, Y., Georgiou, T., Lew, M.S.: A review of semantic segmentation using deep neural networks. Int. J. Multimedia Inf. Retrieval 7(2), 87–93 (2018)

    Google Scholar 

  19. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)

    Google Scholar 

  20. Goceri, E., Goceri, N.: Deep learning in medical image analysis: recent advances and future trends. In: Proceedings of the IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP), pp 305–310 (2017)

    Google Scholar 

  21. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 1–15 (2019)

    Google Scholar 

  22. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. arXiv preprint arXiv:191202911 (2019)

  23. Goceri, E.: Challenges and recent solutions for image segmentation in the era of deep learning. In: 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA), IEEE (2019). https://doi.org/10.1109/ipta.2019.8936087

  24. Zhang, P., Zhong, Y., Deng, Y., Tang, X., Li, X.: A survey on deep learning of small sample in biomedical image analysis. arXiv preprint arXiv:190800473 (2019)

  25. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Google Scholar 

  26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3431–3440 (2015)

    Google Scholar 

  27. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  28. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp 1520–1528 (2015)

    Google Scholar 

  29. Badrinarayanan, V., Handa, A., Cipolla, R., Segnet: a deep convolutional encoderdecoder architecture for image segmentation. arXiv:151100561 (2015)

  30. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision, pp 565–571. IEEE (2016)

    Google Scholar 

  32. Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers ’ tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp 11–19 (2017)

    Google Scholar 

  33. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision, pp 801–818 (2018)

    Google Scholar 

  34. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep convolutional neural networks for fast and low power mobile applications. arXiv preprint arXiv:151106530 (2015)

  35. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp 2074–2082 (2016)

    Google Scholar 

  36. Drozdzal, M., et al.: Learning normalized inputs for iterative estimation in medical image segmentation. Med. Image Anal. 44, 1–13 (2018)

    Google Scholar 

  37. Gu, Z., et al.: CE-net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Google Scholar 

  38. Alex, L., et al.: Real-time deep hair matting on mobile devices (2018)

    Google Scholar 

  39. Olaf, R., et al.: U-net: convolutional networks for biomedical image segmentation. arXiv:1505.04597 [cs.CV] (2015)

  40. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogrammetry Remote Sens. 162, 94–114 (2019)

    Google Scholar 

  41. Szegedy, C., et al.: Going deeper with convolutions (2014)

    Google Scholar 

  42. Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian, S.: Deep residual learning for image recognition, arXiv:1512.03385 [cs.CV] (2015)

  43. François, C.: Xception: deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  44. Sergey, I., Christian, S.: batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 [cs.LG] (2015)

  45. Vinod, N., Geoffrey, E.H., et al.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel (2010)

    Google Scholar 

  46. Łukasz, K., et al.: Depthwise separable convolutions for neural machine translation (2018)

    Google Scholar 

  47. LGG Segmentation Dataset. https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation Accessed 03 Oct 2021

  48. Abraham, N., Khan, N.M.: A novel focal tversky loss function with improved attention U-net for lesion segmentation, arXiv preprint arXiv:1810.07842 (2018)

  49. Architecture started from baseline architecture HelloAI RIS Online. https://eithealth.eu/project/helloairis/ (2021) Accessed 03 Oct 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina-Adriana Mercioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mercioni, MA., Stavarache, L.L. (2022). Disease Diagnosis with Medical Imaging Using Deep Learning. In: Arai, K. (eds) Advances in Information and Communication. FICC 2022. Lecture Notes in Networks and Systems, vol 439. Springer, Cham. https://doi.org/10.1007/978-3-030-98015-3_13

Download citation

Publish with us

Policies and ethics