Skip to main content

Hybrids of Conducting Polymers and Carbon-Based Materials Aiming Biosensors Applications

  • Chapter
  • First Online:
Advances in Bioelectrochemistry Volume 3

Abstract

Hybrids of intrinsic conducting polymers (CPs) and carbon-based materials are frequently studied for technological application in several areas. This chapter discusses recent applications of these hybrids in bioelectrochemistry, with a focus on biosensors. These hybrids presented synergic characteristics such as large surface, significant electrical conductivity, and outstanding thermal and mechanical properties improving the analytical responses as selectivity, sensitivity, reproducibility, and response time, of the biosensors. Thus, these hybrids have been extensively explored in the development of non-enzymatic and enzymatic biosensors and used in medical, environmental, food, and pharmaceutical analysis. Biosensors based on these CPs/carbon-based hybrids are simple, specific, and sensitive as well as enable manufacture disposable, and portable miniature device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canobre SC, Almeida DAL, Fonseca CP, Neves S (2009) Synthesis and characterization of hybrid composites based on carbon nanotubes. Electrochim Acta 54:6383–6388

    Article  CAS  Google Scholar 

  2. Hur J, Park S-H, Bae J (2015) Elaborate chemical sensors based on graphene/conducting polymer hybrids. Curr Org Chem 19:1117–1133

    Article  CAS  Google Scholar 

  3. Bourdo SE, Viswanathan T (2005) Graphite/polyaniline (GP) composites: synthesis and characterization. Carbon 43:2983–2988

    Article  CAS  Google Scholar 

  4. Wang L, Wang D, Zhu G et al (2011) Thermoelectric properties of conducting polyaniline/graphite composites. Mater Lett 65:1086–1088

    Article  CAS  Google Scholar 

  5. Simoes FR, Capparelli Mattoso LH, Pedro Vaz CM (2006) Conducting polymers as sensor materials for the electrochemical detection of pesticides. Sens Lett 4:319–324

    Article  CAS  Google Scholar 

  6. Huang J-C (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313

    Article  CAS  Google Scholar 

  7. Simoes FR, Bulhoes LOS, Pereira EC (2009) Synthesis and characterization of conducting composites of polyaniline and carbon black with high thermal stability. Polim-Cienc E Tecnol 19:54–57

    Article  CAS  Google Scholar 

  8. Lee H-Y, Jung Y, Kim S (2016) Conducting polymer coated graphene oxide electrode for rechargeable lithium-sulfur batteries. J Nanosci Nanotechnol 16:2692–2695

    Article  CAS  Google Scholar 

  9. Zhou H, Han G (2016) One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors. Electrochim Acta 192:448–455

    Article  CAS  Google Scholar 

  10. Lei W, Si W, Xu Y et al (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722

    Article  CAS  Google Scholar 

  11. Gokoglan TC, Kesik M, Soylemez S et al (2017) Paper based glucose biosensor using graphene modified with a conducting polymer and gold nanoparticles. J Electrochem Soc 164:G59–G64

    Article  CAS  Google Scholar 

  12. An HF, Wang XY, Li N et al (2009) Carbon and conducting polymer composites for supercapacitors. Prog Chem 21:1832–1838

    CAS  Google Scholar 

  13. Albayati SAR, Kashanian S, Nazari M, Rezaei S (2019) Novel fabrication of a laccase biosensor to detect phenolic compounds using a carboxylated multiwalled carbon nanotube on the electropolymerized support. Bull Mater Sci 42:187

    Article  CAS  Google Scholar 

  14. Yang Y, Zhang L, Li S et al (2013) Electrochemical performance of conducting polymer and its nanocomposites prepared by chemical vapor phase polymerization method. J Mater Sci-Mater Electron 24:2245–2253

    Article  CAS  Google Scholar 

  15. Branzoi V, Branzoi F, Pilan L, Donisan N (2010) The characterization of some nanocomposites based on conducting polymers and carbon nanotubes obtained by co-polymerization. Rev Roum Chim 55:369

    Google Scholar 

  16. Frackowiak E, Khomenko V, Jurewicz K et al (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418

    Article  CAS  Google Scholar 

  17. Mottaghitalab V (2005) The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers. Synth Met 152:77–80

    Article  CAS  Google Scholar 

  18. Alqarni SA, Hussein MA, Ganash AA, Khan A (2020) Composite material-based conducting polymers for electrochemical sensor applications: a mini review. Bionanoscience 10:351–364

    Article  Google Scholar 

  19. Jain R, Jadon N, Pawaiya A (2017) Polypyrrole based next generation electrochemical sensors and biosensors: a review. Trac-Trends Anal Chem 97:363–373

    Article  CAS  Google Scholar 

  20. Mohajeri S, Dolati A, Yazdanbakhsh K (2019) Synthesis and characterization of a novel non-enzymatic glucose biosensor based on polyaniline/zinc oxide/multi-walled carbon nanotube ternary nanocomposite. J Electrochem Sci Eng 9:207–222

    Article  CAS  Google Scholar 

  21. de Araújo GM, Simões FR (2017) Self-assembled films based on polypyrrole and carbon nanotubes composites for the determination of Diuron pesticide. J Solid State Electrochem

    Google Scholar 

  22. He BL, Dong B, Wang W, Li HL (2009) Performance of polyaniline/multi-walled carbon nanotubes composites as cathode for rechargeable lithium batteries. Mater Chem Phys 114:371–375

    Article  CAS  Google Scholar 

  23. Wang Z, Han J-J, Zhang N et al (2019) Synthesis of polyaniline/graphene composite and its application in zinc-rechargeable batteries. J Solid State Electrochem 23:3373–3382

    Article  CAS  Google Scholar 

  24. Nemade K, Dudhe P, Tekade P (2018) Enhancement of photovoltaic performance of polyaniline/graphene composite-based dye-sensitized solar cells by adding TiO2 nanoparticles. Solid State Sci 83:99–106

    Article  CAS  Google Scholar 

  25. Cogal S, Ali AK, Erten-Ela S et al (2018) Plasma-based preparation of polyaniline/graphene and polypyrrole/graphene composites for dye-sensitized solar cells as counter electrodes. J Macromol Sci Part-Pure Appl Chem 55:317–323

    Article  CAS  Google Scholar 

  26. Shin K-Y, Cho S, Jang J (2013) Graphene/polyaniline/poly(4-styrenesulfonate) hybrid film with uniform surface resistance and its flexible dipole tag antenna application. Small 9:3792–3798

    Article  CAS  Google Scholar 

  27. Thangamani JG, Deshmukh K, Sadasivuni KK et al (2017) White graphene reinforced polypyrrole and poly(vinyl alcohol) blend nanocomposites as chemiresistive sensors for room temperature detection of liquid petroleum gases. Microchim Acta 184:3977–3987

    Article  CAS  Google Scholar 

  28. Qi Z, Ye J, Chen W et al (2018) 3D-printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage. Adv Mater Technol 3:1800053

    Article  CAS  Google Scholar 

  29. Spinks GM, Xi BB, Truong VT, Wallace GG (2005) Actuation behaviour of layered composites of polyaniline, carbon nanotubes and polypyrrole. Synth Met 151:85–91

    Article  CAS  Google Scholar 

  30. Qiu YJ, Yu J, Fang G et al (2009) Synthesis of carbon/carbon core/shell nanotubes with a high specific surface area. J Phys Chem C 113:61–68

    Article  CAS  Google Scholar 

  31. Popov A, Aukstakojyte R, Gaidukevic J et al (2021) Reduced graphene oxide and polyaniline nanofibers nanocomposite for the development of an amperometric glucose biosensor. Sensors 21:948

    Article  CAS  Google Scholar 

  32. Facure MHM, Mercante LA, Mattoso LHC, Correa DS (2017) Detection of trace levels of organophosphate pesticides using an electronic tongue based on graphene hybrid nanocomposites. Talanta 167:59–66

    Article  CAS  Google Scholar 

  33. Cesarino I, Moraes FC, Machado SAS (2011) A biosensor based on polyaniline-carbon nanotube core-shell for electrochemical detection of pesticides. Electroanalysis 23:2586–2593

    Article  CAS  Google Scholar 

  34. Fernandez J, Bonastre J, Molina J, Cases F (2018) Electrochemical study on an activated carbon cloth modified by cyclic voltammetry with polypyrrole/anthraquinone sulfonate and reduced graphene oxide as electrode for energy storage. Eur Polym J 103:179–186

    Article  CAS  Google Scholar 

  35. Radhapyari K, Kotoky P, Das MR, Khan R (2013) Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111:47–53

    Article  CAS  Google Scholar 

  36. Zhuang X, Tian C, Luan F et al (2016) One-step electrochemical fabrication of a nickel oxide nanoparticle/polyaniline nanowire/graphene oxide hybrid on a glassy carbon electrode for use as a non-enzymatic glucose biosensor. Rsc Adv 6:92541–92546

    Article  CAS  Google Scholar 

  37. Rahman MM, Shiddiky MJA, Rahman MA, Shim Y-B (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384:159–165

    Article  CAS  Google Scholar 

  38. Yang M, Ren X, Yang T et al (2021) Polypyrrole/sulfonated multi-walled carbon nanotubes conductive hydrogel for electrochemical sensing of living cells. Chem Eng J 418:129483

    Google Scholar 

  39. Sethuraman V, Muthuraja P, Raj JA, Manisankar P (2016) A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode. Biosens Bioelectron 84:112–119

    Article  CAS  Google Scholar 

  40. Zheng H, Yan Z, Wang M et al (2019) Biosensor based on polyaniline-polyacrylonitrile-graphene hybrid assemblies for the determination of phenolic compounds in water samples. J Hazard Mater 378:120714

    Google Scholar 

  41. Yang Y, Kang M, Fang S et al (2015) Electrochemical biosensor based on three-dimensional reduced graphene oxide and polyaniline nanocomposite for selective detection of mercury ions. Sens Actuators B-Chem 214:63–69

    Article  CAS  Google Scholar 

  42. Soylemez S (2019) A conjugated polymer and SWCNTs transducer for an effective biosensing tool. J Electrochem Soc 166:B853–B858

    Article  CAS  Google Scholar 

  43. Nia PM, Meng WP, Lorestani F et al (2015) Electrodeposition of copper oxide/polypyrrole/reduced graphene oxide as a nonenzymatic glucose biosensor. Sens Actuators B-Chem 209:100–108

    Article  CAS  Google Scholar 

  44. Xu Q, Gu S-X, Jin L et al (2014) Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sens Actuators B-Chem 190:562–569

    Article  CAS  Google Scholar 

  45. Shrestha BK, Ahmad R, Mousa HM et al (2016) High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film. J Colloid Interface Sci 482:39–47

    Article  CAS  Google Scholar 

  46. Radhakrishnan S, Sumathi C, Umar A et al (2013) Polypyrrole-poly(3,4-ethylenedioxythiophene)-Ag (PPy-PEDOT-Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens Bioelectron 47:133–140

    Article  CAS  Google Scholar 

  47. Wang L, Hua E, Liang M et al (2014) Graphene sheets, polyaniline and AuNPs based DNA sensor for electrochemical determination of BCR/ABL fusion gene with functional hairpin probe. Biosens Bioelectron 51:201–207

    Article  CAS  Google Scholar 

  48. Li Y, Zhang Y, Han G et al (2016) An acetylcholinesterase biosensor based on graphene/polyaniline composite film for detection of pesticides. Chin J Chem 34:82–88

    Article  CAS  Google Scholar 

  49. Liu GD, Lin YH (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843

    Article  CAS  Google Scholar 

  50. Liu K, Dong H, Deng Y (2016) Recent advances on rapid detection of pesticides based on enzyme biosensor of nanomaterials. J Nanosci Nanotechnol 16:6648–6656

    Article  CAS  Google Scholar 

  51. Yang Y, Asiri AM, Du D, Lin Y (2014) Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139:3055–3060

    Article  CAS  Google Scholar 

  52. Min K, Freeman C, Kang H, Choi S-U (2015) The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. Biomed Res Int 2015:825098

    Google Scholar 

  53. Saidur MR, Aziz ARA, Basirun WJ (2017) Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: a review. Biosens Bioelectron 90:125–139

    Article  CAS  Google Scholar 

  54. Cui L, Wu J, Ju H (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens Bioelectron 63:276–286

    Article  CAS  Google Scholar 

  55. Kaur N, Thakur H, Prabhakar N (2016) Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate. J Electroanal Chem 775:121–128

    Article  CAS  Google Scholar 

  56. Pundir CS, Chauhan N (2012) Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal Biochem 429:19–31

    Article  CAS  Google Scholar 

  57. Kesik M, Kanik FE, Turan J et al (2014) An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides. Sens Actuators B-Chem 205:39–49

    Article  CAS  Google Scholar 

  58. Cesarino I, Moraes FC, Lanza MRV, Machado SAS (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem 135:873–879

    Article  CAS  Google Scholar 

  59. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensors for food analysis. Monatshefte Chem 140:891–899

    Article  CAS  Google Scholar 

  60. Kaur N, Thakur H, Prabhakar N (2019) Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem J 147:393–402

    Article  CAS  Google Scholar 

  61. Lata S, Batra B, Singala N, Pundir CS (2013) Construction of amperometric l-amino acid biosensor based on l-amino acid oxidase immobilized onto ZnONPs/c-MWCNT/PANI/AuE. Sens Actuators B Chem 1088:1080–1088

    Article  CAS  Google Scholar 

  62. Lu L, Zhang O, Xu J et al (2013) A facile one-step redox route for the synthesis of graphene/poly (3,4-ethylenedioxythiophene) nanocomposite and their applications in biosensing. Sens Actuators B-Chem 181:567–574

    Article  CAS  Google Scholar 

  63. Chen C, Xie Q, Yang D et al (2013) Recent advances in electrochemical glucose biosensors: a review. Rsc Adv 3:4473–4491

    Article  CAS  Google Scholar 

  64. Hsu C-W, Su F-C, Peng P-Y et al (2016) Highly sensitive non-enzymatic electrochemical glucose biosensor using a photolithography fabricated micro/nano hybrid structured electrode. Sens Actuators B-Chem 230:559–565

    Article  CAS  Google Scholar 

  65. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832

    Article  CAS  Google Scholar 

  66. He W, Huang Y, Wu J (2020) Enzyme-free glucose biosensors based on MoS2 nanocomposites. Nanoscale Res Lett 15:60

    Article  CAS  Google Scholar 

  67. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511

    Article  CAS  Google Scholar 

  68. Xue K, Zhou S, Shi H et al (2014) A novel amperometric glucose biosensor based on ternary gold nanoparticles/polypyrrole/reduced graphene oxide nanocomposite. Sens Actuators B-Chem 203:412–416

    Article  CAS  Google Scholar 

  69. Tan XC, Ll MJ, Cai PX et al (2005) An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. Anal Biochem 337:111–120

    Article  CAS  Google Scholar 

  70. Amiri M, Arshi S (2020) An overview on electrochemical determination of cholesterol. Electroanalysis 32:1391–1407

    Article  CAS  Google Scholar 

  71. Arya SK, Datta M, Malhotra BD (2008) Recent advances in cholesterol biosensor. Biosens Bioelectron 23:1083–1100

    Article  CAS  Google Scholar 

  72. Dey RS, Raj CR (2010) Development of an amperometric cholesterol biosensor based on graphene-Pt nanoparticle hybrid material. J Phys Chem C 114:21427–21433

    Article  CAS  Google Scholar 

  73. Ruecha N, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite. Biosens Bioelectron 52:13–19

    Article  CAS  Google Scholar 

  74. Alexander S, Barapeedharan P, Balasubrahmanyan S, Ramaprabhu S (2017) Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor. Eur Polym J 86:106–116

    Article  CAS  Google Scholar 

  75. Gautam V, Singh KP, Yadav VL (2018) Polyaniline/MWCNTs/starch modified carbon paste electrode for non-enzymatic detection of cholesterol: application to real sample (cow milk). Anal Bioanal Chem 410:2173–2181

    Article  CAS  Google Scholar 

  76. Chen Y, Guo S, Zhao M et al (2018) Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzyme-assisted signal amplification strategy. Biosens Bioelectron 119:215–220

    Article  CAS  Google Scholar 

  77. Chen Y, Li Y, Yang Y et al (2017) A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for Mycobacterium tuberculosis. Microchim Acta 184:1801–1808

    Article  CAS  Google Scholar 

  78. Liu C, Jiang D, Xiang G et al (2014) An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle-polyaniline nanocomposite. Analyst 139:5460–5465

    Article  CAS  Google Scholar 

  79. Pasinszki T, Krebsz M, Tung TT, Losic D (2017) Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors 17:1919

    Article  CAS  Google Scholar 

  80. Tezerjani MD, Benvidi A, Rezaeinasab M et al (2016) An impedimeric biosensor based on a composite of graphene nanosheets and polyaniline as a suitable platform for prostate cancer sensing. Anal Methods 8:7507–7515

    Article  CAS  Google Scholar 

  81. Asadian E, Shahrokhian S, Zad AI, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: Application to sensitive electrochemical detection of dobutamine. Sens Actuators B-Chem 196:582–588

    Article  CAS  Google Scholar 

  82. Khodadadi A, Faghih-Mirzaei E, Karimi-Maleh H et al (2019) A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens Actuators B-Chem 284:568–574

    Article  CAS  Google Scholar 

  83. Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1–12

    Article  CAS  Google Scholar 

  84. Jesionowski T, Zdarta J, Krajewska B (2014) Enzyme immobilization by adsorption: a review. Adsorpt-J Int Adsorpt Soc 20:801–821

    Article  CAS  Google Scholar 

  85. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9.

    Google Scholar 

  86. Cao LQ, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  CAS  Google Scholar 

  87. Klotzbach TL, Watt M, Ansari Y, Minteer SD (2008) Improving the microenvironment for enzyme immobilization at electrodes by hydrophobically modifying chitosan and Nafion (R) polymers. J Membr Sci 311:81–88

    Article  CAS  Google Scholar 

  88. Barbosa O, Ortiz C, Berenguer-Murcia A et al (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. Rsc Adv 4:1583–1600

    Article  CAS  Google Scholar 

  89. Shahrokhian S, Salimian R (2018) Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: application toward BRCA1 sensing. Sens Actuators B-Chem 266:160–169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thanks FAPESP (2021/08041-4 and 2017/24742-7) CAPES and CNPQ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Ruiz Simões .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simões, F.R., de Araújo, G.M., Cardoso, M.A. (2022). Hybrids of Conducting Polymers and Carbon-Based Materials Aiming Biosensors Applications. In: Crespilho, F.N. (eds) Advances in Bioelectrochemistry Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-97921-8_6

Download citation

Publish with us

Policies and ethics