Skip to main content

Carbon-Based Perovskite Solar Cells: The Future Photovoltaic Technology

  • Conference paper
  • First Online:
Congress on Research, Development and Innovation in Renewable Energies

Abstract

In recent years, perovskite solar cells (PSC) have attracted the attention of numerous research groups due to the dramatic increase in their energy conversion efficiency from 3.8% to 25.5% in just 12 years. This rapid evolution among all solar cells makes PSC a promising alternative for future electricity production, but not without first overcoming some barriers, including instability against humidity and costly manufacturing processes. For this work, a review of the literature related to the topic of PSC was carried out, with special emphasis on carbon-based perovskite solar cells, which stand out for their simple manufacturing process, low cost of components, and good stability, as carbon materials are inert to ion migration (which occurs from perovskite and metal electrodes) and are inherently resistant to water. Besides, they have developed fabrication technologies to scale-up, which makes them ideal candidates for industrialization, but first, these technologies must be optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IRENA: REthinking energy: Towards a new power system. International Renewable Energy Agency (IRENA) (2014).

    Google Scholar 

  2. O’Neill, B. C., Oppenheimer, M., Warren, R., Hallegatte, S., Kopp, R. E., Pörtner, H. O., Scholes, R., Birkmann, J., Foden, W., Licker, R., Mach, K. J., Marbaix, P., Mastrandrea, M. D., Price, J., Takahashi, K., van Ypersele, J.-P., & Yohe, G. (2017). IPCC reasons for concern regarding climate change risks. Nature Climate Change, 7, 28–37.

    Article  Google Scholar 

  3. Green, M., Ho-Baillie, A., & Snaith, H. (2014). The emergence of perovskite solar cells. Nature Photonics, 8, 506–514.

    Article  Google Scholar 

  4. Hao, F., Stoumpos, C., Cao, D., Chang, R., & Kanatzidis, M. (2014). Lead-free solid-state organic-inorganic halide perovskite solar cells. Nature Photonics, 8, 489–494.

    Article  Google Scholar 

  5. Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., & Huang, J. (2015). Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 347, 967–970.

    Article  Google Scholar 

  6. Snaith, H. J. (2013). Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 4, 3623–3630.

    Article  Google Scholar 

  7. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A., & Snaith, H. J. (2013). Electron-hole diffusion lengths exceeding 1 micro-meter in an organometal trihalide perovskite absorber. Science, 342, 341–344.

    Article  Google Scholar 

  8. Marchioro, A., Teuscher, J., Friedrich, D., Kunst, M., van de Krol, R., Moehl, T., Grätzel, M., & Moser, J.-E. (2014). Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photonics, 8, 250–255.

    Article  Google Scholar 

  9. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131, 6050–6051.

    Article  Google Scholar 

  10. NREL: Best research-cell efficiency chart. https://www.nrel.gov/pv/cell-efficiency.html. Last accessed 2021/06/08.

  11. Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 3, 3132.

    Article  Google Scholar 

  12. Chen, H., Wei, Z., He, H., Zheng, X., Wong, K. S., & Yang, S. (2016). Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Advanced Energy Materials, 6, 1502087.

    Article  Google Scholar 

  13. Hu, M., Liu, L., Mei, A., Yang, Y., Liu, T., & Han, H. (2014). Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3. Journal of Materials Chemistry A, 2, 17115–17121.

    Article  Google Scholar 

  14. Raminafshar, C., Dracopoulos, V., Mohammadi, M. R., & Lianos, P. (2018). Carbon based perovskite solar cells constructed by screen-printed components. Electrochimica Acta, 276, 261–267.

    Article  Google Scholar 

  15. Grancini, G., Roldán-Carmona, C., Zimmermann, I., Mosconi, E., Lee, X., Martineau, D., Narbey, S., Oswald, F., De Angelis, F., Graetzel, M., & Nazeeruddin, M. K. (2017). One-year stable perovskite solar cells by 2D/3D interface engineering. Nature Communications, 8, 15684.

    Article  Google Scholar 

  16. Zhou, Y., & Zhu, K. (2016). Perovskite solar cells shine in the “Valley of the Sun.”. ACS Energy Letters, 1, 64–67.

    Article  Google Scholar 

  17. Kay, A., & Grätzel, M. (1996). Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cell, 44, 99–117.

    Article  Google Scholar 

  18. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Gratzel, M., & Han, H. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345, 295–298.

    Article  Google Scholar 

  19. Chen, X., Xia, Y., Huang, Q., Li, Z., Mei, A., Hu, Y., Wang, T., Cheacharoen, R., Rong, Y., & Han, H. (2021). Tailoring the dimensionality of hybrid perovskites in mesoporous carbon electrodes for type-II band alignment and enhanced performance of printable hole-conductor-free perovskite solar cells. Advanced Energy Materials, 11, 2100292.

    Article  Google Scholar 

  20. Martinez, V. (2019). Preparation of highly efficient carbon-based perovskite solar cells (C-based PSCs) by screen-printing. In Organic, hybrid, and perovskite photovoltaics XX (p. 110942L). International Society for Optics and Photonics.

    Google Scholar 

  21. Zhang, H., Xiao, J., Shi, J., Su, H., Luo, Y., Li, D., Wu, H., Cheng, Y., & Meng, Q. (2018). Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Advanced Functional Materials, 28, 1802985.

    Article  Google Scholar 

  22. Zhang, F., Yang, X., Cheng, M., Li, J., Wang, W., Wang, H., & Sun, L. (2015). Engineering of hole-selective contact for low temperature-processed carbon counter electrode-based perovskite solar cells. Journal of Materials Chemistry A, 3, 24272–24280.

    Article  Google Scholar 

  23. Zhang, F., Yang, X., Cheng, M., Wang, W., & Sun, L. (2016). Boosting the efficiency and the stability of low cost perovskite solar cells by using CuPc nanorods as hole transport material and carbon as counter electrode. Nano Energy, 20, 108–116.

    Article  Google Scholar 

  24. Liu, S., Huang, W., Liao, P., Pootrakulchote, N., Li, H., Lu, J., Li, J., Huang, F., Shai, X., & Zhao, X. (2017). 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. Journal of Materials Chemistry A, 5, 22952–22958.

    Article  Google Scholar 

  25. Liu, X., Liu, Z., Sun, B., Tan, X., Ye, H., Tu, Y., Shi, T., Tang, Z., & Liao, G. (2018). 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as electron transport layer. Nano Energy, 50, 201–211.

    Article  Google Scholar 

  26. Zhang, C., Wang, S., Zhang, H., Feng, Y., Tian, W., Yan, Y., Bian, J., Wang, Y., Jin, S., & Zakeeruddin, S. M. (2019). Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science, 12, 3585–3594.

    Article  Google Scholar 

  27. Gao, L., Hu, J., Meng, F., Zhou, Y., Li, Y., Wei, G., & Ma, T. (2020). Comparison of interfacial bridging carbon materials for effective carbon-based perovskite solar cells. Journal of Colloid and Interface Science, 579, 425–430.

    Article  Google Scholar 

  28. Liu, B.-T., Yang, J.-H., & Huang, Y.-S. (2021). Highly efficient perovskite solar cells fabricated under a 70% relative humidity atmosphere. Journal of Power Sources, 500, 229985.

    Article  Google Scholar 

  29. Sheng, Y., Hu, Y., Mei, A., Jiang, P., Hou, X., Duan, M., Hong, L., Guan, Y., Rong, Y., & Xiong, Y. (2016). Enhanced electronic properties in CH3NH3PbI3 via LiCl mixing for hole-conductor-free printable perovskite solar cells. Journal of Materials Chemistry A, 4, 16731–16736.

    Article  Google Scholar 

  30. Tsai, C.-M., Wu, G.-W., Narra, S., Chang, H.-M., Mohanta, N., Wu, H.-P., Wang, C.-L., & Diau, E. W.-G. (2017). Control of preferred orientation with slow crystallization for carbon-based mesoscopic perovskite solar cells attaining efficiency 15%. Journal of Materials Chemistry A, 5, 739–747.

    Article  Google Scholar 

  31. Aitola, K., Domanski, K., Correa-Baena, J., Sveinbjörnsson, K., Saliba, M., Abate, A., Grätzel, M., Kauppinen, E., Johansson, E. M., & Tress, W. (2017). High temperature-stable perovskite solar cell based on low-cost carbon nanotube hole contact. Advanced Materials, 29, 1606398.

    Article  Google Scholar 

  32. Yang, Y., Chen, H., Zheng, X., Meng, X., Zhang, T., Hu, C., Bai, Y., Xiao, S., & Yang, S. (2017). Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy, 42, 322–333.

    Article  Google Scholar 

  33. Hu, Y., Zhang, Z., Mei, A., Jiang, Y., Hou, X., Wang, Q., Du, K., Rong, Y., Zhou, Y., & Xu, G. (2018). Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule. Advanced Materials, 30, 1705786.

    Article  Google Scholar 

  34. Liu, Z., Sun, B., Liu, X., Han, J., Ye, H., Tu, Y., Chen, C., Shi, T., Tang, Z., & Liao, G. (2018). 15% efficient carbon based planar-heterojunction perovskite solar cells using a TiO2/SnO2 bilayer as the electron transport layer. Journal of Materials Chemistry A, 6, 7409–7419.

    Article  Google Scholar 

  35. Zhou, J., Hou, J., Tao, X., Meng, X., & Yang, S. (2019). Solution-processed electron transport layer of n-doped fullerene for efficient and stable all carbon based perovskite solar cells. Journal of Materials Chemistry A, 7, 7710–7716.

    Article  Google Scholar 

  36. Yang, Y., Liu, Z., Ng, W. K., Zhang, L., Zhang, H., Meng, X., Bai, Y., Xiao, S., Zhang, T., & Hu, C. (2019). An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material free carbon based halide perovskite solar cells. Advanced Functional Materials, 29, 1806506.

    Article  Google Scholar 

  37. Chu, Q.-Q., Ding, B., Peng, J., Shen, H., Li, X., Liu, Y., Li, C.-X., Li, C.-J., Yang, G.-J., & White, T. P. (2019). Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science & Technology, 35, 987–993.

    Article  Google Scholar 

  38. Peng, C., Su, H., Li, J., Duan, Q., Li, Q., Xiao, J., Ku, Z., Zhong, J., Li, W., & Peng, Y. (2021). Scalable, efficient and flexible perovskite solar cells with carbon film based electrode. Solar Energy Materials and Solar Cells, 230, 111226.

    Article  Google Scholar 

  39. Cao, Y., Li, W., Liu, Z., Zhao, Z., Xiao, Z., Zi, W., & Cheng, N. (2020). Ligand modification of Cu2ZnSnS4 nanoparticles boosts the performance of low temperature paintable carbon electrode based perovskite solar cells to 17.71%. Journal of Materials Chemistry A, 8, 12080–12088.

    Article  Google Scholar 

  40. Su, H., Xiao, J., Li, Q., Peng, C., Zhang, X., Mao, C., Yao, Q., Lu, Y., Ku, Z., & Zhong, J. (2020). Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency. Materials Science in Semiconductor Processing, 107, 104809.

    Article  Google Scholar 

  41. Liu, Z., Yu, Z., Li, W., Zhao, Z., Xiao, Z., Lei, B., Zi, W., Cheng, N., Liu, J., & Tu, Y. (2021). Scalable one-step heating up synthesis of Cu2ZnSnS4 nanocrystals hole conducting materials for carbon electrode based perovskite solar cells. Solar Energy, 224, 51–57.

    Article  Google Scholar 

  42. Chen, H., & Yang, S. (2017). Carbon-based perovskite solar cells without hole transport materials: The front runner to the market? Advanced Materials, 29, 1603994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barrutia, I., Seminario-Córdova, R., Martinez-Rojas, V. (2022). Carbon-Based Perovskite Solar Cells: The Future Photovoltaic Technology. In: Espinoza-Andaluz, M., Andersson, M., Li, T., Santana Villamar, J., Encalada Dávila, Á., Melo Vargas, E. (eds) Congress on Research, Development and Innovation in Renewable Energies. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-97862-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97862-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97861-7

  • Online ISBN: 978-3-030-97862-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics