Skip to main content

Learning Footstep Planning for the Quadrupedal Locomotion with Model Predictive Control

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 6 (RiTA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 429))

Abstract

This paper presents a combined framework with nonlinear model predictive control (NMPC) reinforcement learning (RL) for locomotion of a legged robot. A neural network trained by RL works as a footstep planner which decides where to put the feet of the robot on the ground. Given the constraints of footsteps and dynamics of the model, ground reaction forces exerting on each legs are obtained through NMPC and applied to the robot. This framework increases sample efficiency compared to the end-to-end RL and shows better performances than base NMPC controller which decides its footsteps in a heuristic manner. The proposed framework is verified on a simulation environment by performing challenging tasks such as push recovery and rough terrain walking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuindersma, S., et al.: Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robots 40(3), 429–455 (2015). https://doi.org/10.1007/s10514-015-9479-3

    Article  Google Scholar 

  2. Hong, S., Kim, J.-H., Park, H.-W.: Real-time constrained nonlinear model predictive control on SO(3) for dynamic legged locomotion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3982–3989 (2020)

    Google Scholar 

  3. Ding, Y., Pandala, A., Park, H.-W., et al.: Representation-free model predictive control for dynamic motions in quadrupeds. IEEE Trans. Robot. 37, 1154–1171 (2021)

    Article  Google Scholar 

  4. Carlo, J., Wensing, P.M., Kim, S., et al.: Dynamic locomotion in the MIT cheetah 3 through convex model-predictive control. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9 (2018)

    Google Scholar 

  5. Raibert, M.H., Brown, H.B., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. Int. J. Robot. Res. 3, 75–92 (1984)

    Article  Google Scholar 

  6. Pratt, J., Carff, J., Goswami, A., et al.: Capture point: a step toward humanoid push recovery. In: IEEE-RAS International Conference on Humanoid Robots, vol. 6, pp. 200–207 (2006)

    Google Scholar 

  7. Mordatch, I., Todorov, E., Popovic, Z.: Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31(4), 1–8 (2012)

    Article  Google Scholar 

  8. Winkler, A.W., Bellicoso, C.D., Hutterm, M., et al.: Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot. Autom. Lett. 3, 1560–1567 (2018)

    Article  Google Scholar 

  9. Li, C., Ding, Y., Park, H.-W.: Centroidal-momentum-based trajectory generation for legged locomotion. Mechatronics 68, 102364 (2020)

    Google Scholar 

  10. Hwangbo, J., Lee, J., Hutter, M., et al.: Learning agile and dynamic motor skills for legged robots. Sci. Robot. 4, 26 (2019)

    Article  Google Scholar 

  11. Carius, J., Farshidian, F., Hutter, M.: MPC-Net: a first principles guided policy search. IEEE Robot. Autom. Lett. 5, 2897–2904 (2020)

    Google Scholar 

  12. Peng, X.B., Coumans, E., Levine, S., et al.: Learning agile robotic locomotion skills by imitating animals. arXiv:2004.00784 (2020)

  13. Mahony, R., Hamel, T., Pflimlin, J.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53(5), 1203–1218 (2008)

    Article  MathSciNet  Google Scholar 

  14. Kim, D., Carlo, J., Kim, S., et al.: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv:1909.06586 (2019)

  15. Schulman, J., Wolski, F., Klimov, O., et al.: Proximal policy optimization algorithm. arXiv:1707. 06347 (2017)

  16. Tan, J., Coumans, E., Vanhoucke, V., et al.: Sim-to-real: learning agile locomotino for quadruped robots. arXiv:1804.10332 (2018)

  17. Hwangbo, J., Lee, J., Hutter, M.: Per-contact iteration method for solving contact dynamics. IEEE Robot. Autom. Lett. 3(2), 895–902 (2018)

    Article  Google Scholar 

  18. Tsounis, V., Alge, M., Hutter, M. et al.: DeepGait: planning and control of quadrupedal gaits using deep reinforcement learning. arXiv:1909.08339 (2019)

  19. Yang, Y., Zhang, T, Boots, B., et al.: Fast and efficient locomotion via learned gait transitions. arXiv:2104.04644 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Won Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Byun, J.W., Youm, D., Jeon, S., Hwangbo, J., Park, HW. (2022). Learning Footstep Planning for the Quadrupedal Locomotion with Model Predictive Control. In: Kim, J., et al. Robot Intelligence Technology and Applications 6. RiTA 2021. Lecture Notes in Networks and Systems, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97672-9_4

Download citation

Publish with us

Policies and ethics