Skip to main content

Folliculogenesis

  • Chapter
  • First Online:
Natural Cycle and Minimal Stimulation IVF
  • 365 Accesses

Abstract

In natural cycles, folliculogenesis is regulated by a finely tuned system consisting of the hypothalamic–pituitary–ovarian hormone axis, the pulsatile secretion of these hormones, and the expression pattern of hormone receptors. This system usually leads to the formation of a follicle. Ovulation is initiated by the release of luteinizing hormone from the pituitary gland, triggered by estradiol (E2) concentrations which are high enough to allow the oocyte to mature and the endometrium to proliferate sufficiently.

In conventional gonadotropin stimulated IVF (cIVF), endogenous gonadotropins from the pituitary gland are suppressed by high concentrations of E2 and by the administration of GnRH analogues and are replaced by constantly high doses of exogenous gonadotropins. This makes it possible to break through the natural regulatory mechanisms that are supposed to prevent a polyfollicular ovarian response. However, in cIVF the hormone profile is different, which has an impact on folliculogenesis, follicular steroidogenesis, and thus on the function of the follicles and oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edson MA, Nagaraja AK, Matzuk MM. The mammalian ovary from genesis to revelation. Endocr Rev. 2009;30:624–712.

    Article  CAS  Google Scholar 

  2. Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N. Ovarian folliculogenesis. Results Probl Cell Differ. 2016;58:167–90.

    Article  CAS  Google Scholar 

  3. Holesh JE, Bass AN, Lord M. Physiology, ovulation. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2020.

    Google Scholar 

  4. Ackert CL, Gittens JE, O'Brien MJ, Eppig JJ, Kidder GM. Intercellular communication via connexin43 gap junctions is required for ovarian folliculogenesis in the mouse. Dev Biol. 2001;233:258–70.

    Article  CAS  Google Scholar 

  5. Simon AM, Goodenough DA, Li E, Paul DL. Female infertility in mice lacking connexin 37. Nature. 1997;385:525–9.

    Article  CAS  Google Scholar 

  6. Groome NP, Illingworth PJ, O'Brien M, Pai R, Rodger FE, Mather JP, McNeilly AS. Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab. 1996;81:1401–5.

    CAS  PubMed  Google Scholar 

  7. Helmer A, Magaton IM, Stalder O, Surbek D, Stute P, von Wolff M. Otimal timing of ovulation triggering to achieve highest success rates in natural cycles - an analysis based on follicle size and estradiol concentration in natural cycle IVF. Front Endocrinol. 2022, May 26.

    Google Scholar 

  8. Baerwald AR, Walker RA, Pierson RA. Growth rates of ovarian follicles during natural menstrual cycles, oral contraception cycles, and ovarian stimulation cycles. Fertil Steril. 2009;91:440–9.

    Article  Google Scholar 

  9. Dubey AK, Wang HA, Duffy P, Penzias AS. The correlation between follicular measurements, oocyte morphology, and fertilization rates in an in vitro fertilization program. Fertil Steril. 1995;64:787–90.

    Article  CAS  Google Scholar 

  10. Wirleitner B, Okhowat J, Vištejnová L, Králíčková M, Karlíková M, Vanderzwalmen P, Ectors F, Hradecký L, Schuff M, Murtinger M. Relationship between follicular volume and oocyte competence, blastocyst development and live-birth rate: optimal follicle size for oocyte retrieval. Ultrasound Obstet Gynecol. 2018;51:118–25.

    Article  CAS  Google Scholar 

  11. Magoffin DA. Ovarian theca cell. Int J Biochem Cell Biol. 2005;37:1344–9.

    Article  CAS  Google Scholar 

  12. Kollmann Z, Schneider S, Fux M, Bersinger NA, von Wolff M. Gonadotrophin stimulation in IVF alters the immune cell profile in follicular fluid and the cytokine concentrations in follicular fluid and serum. Hum Reprod. 2017;32:820–31.

    Article  CAS  Google Scholar 

  13. von Wolff M, Kollmann Z, Flück CE, Stute P, Marti U, Weiss B, Bersinger NA. Gonadotrophin stimulation for in vitro fertilization significantly alters the hormone milieu in follicular fluid: a comparative study between natural cycle IVF and conventional IVF. Hum Reprod. 2014;29:1049–57.

    Article  Google Scholar 

  14. von Wolff M, Eisenhut M, Stute P, Bersinger NA. Gonadotropin stimulation in In vitro Fertilisation (IVF) reduces follicular fluid hormone levels and disrupts their quantitative association with cumulus cell mRNA. Reprod Biomed Online. 2022;44:193–9.

    Google Scholar 

  15. von Wolff M, Mitter VR, Jamir N, Stute P, Eisenhut M, Bersinger NA. The endocrine milieu in naturally matured follicles is different in women with high serum anti-Müllerian hormone concentrations. Reprod Biomed Online. 2021;43:329–37.

    Article  Google Scholar 

  16. Ciepiela P, Dulęba AJ, Kario A, Chełstowski K, Branecka-Woźniak D, Kurzawa R. Oocyte matched follicular fluid anti-Müllerian hormone is an excellent predictor of live birth after fresh single embryo transfer. Hum Reprod. 2019;34:2244–53.

    CAS  PubMed  Google Scholar 

  17. Bosch E, Labarta E, Crespo J, Simón C, Remohí J, Jenkins J, Pellicer A. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: analysis of over 4000 cycles. Hum Reprod. 2010;25:2092–100.

    Article  CAS  Google Scholar 

  18. Kawate N. Studies on the regulation of expression of luteinizing hormone receptor in the ovary and the mechanism of follicular cyst formation in ruminants. J Reprod Dev. 2004;50:1–8.

    Article  CAS  Google Scholar 

  19. Ortega HH, Marelli BE, Rey F, Amweg AN, Díaz PU, Stangaferro ML, Salvetti NR. Molecular aspects of bovine cystic ovarian disease pathogenesis. Reproduction. 2015;149:R251–64.

    Article  CAS  Google Scholar 

  20. Harlow SD, Gass M, Hall JE, Lobo R, Maki P, Rebar RW, Sherman S, Sluss PM, de Villiers TJ, STRAW + 10 Collaborative Group. Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. J Clin Endocrinol Metab. 2012;97:1159–68.

    Article  CAS  Google Scholar 

  21. Hale GE, Hughes CL, Burger HG, Robertson DM, Fraser IS. Atypical estradiol secretion and ovulation patterns caused by luteal out-of-phase (LOOP) events underlying irregular ovulatory menstrual cycles in the menopausal transition. Menopause. 2009;16:50–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael von Wolff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Wolff, M. (2022). Folliculogenesis. In: von Wolff, M. (eds) Natural Cycle and Minimal Stimulation IVF . Springer, Cham. https://doi.org/10.1007/978-3-030-97571-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97571-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97570-8

  • Online ISBN: 978-3-030-97571-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics