Skip to main content

Beyond Topics: Discovering Latent Healthcare Objectives from Event Sequences

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

Abstract

A meaningful understanding of clinical protocols and patient pathways helps improve healthcare outcomes. Electronic health records (EHR) reflect real-world treatment behaviours that are used to enhance healthcare management but present challenges; protocols and pathways are often loosely defined and with elements frequently not recorded in EHRs, complicating the enhancement. To solve this challenge, healthcare objectives associated with healthcare management activities can be indirectly observed in EHRs as latent topics. Topic models, such as Latent Dirichlet Allocation (LDA), are used to identify latent patterns in EHR data. However, they do not examine the ordered nature of EHR sequences, nor do they appraise individual events in isolation. Our novel approach, the Categorical Sequence Encoder (CaSE) addresses these shortcomings. The sequential nature of EHRs is captured by CaSE’s event-level representations, revealing latent healthcare objectives. In synthetic EHR sequences, CaSE outperforms LDA by up to 37% at identifying healthcare objectives. In the real-world MIMIC-III dataset, CaSE identifies meaningful representations that could critically enhance protocol and pathway development.

This work was supported by Cancer Australia in the form of a doctoral research stipend (to A. Caruana).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sliding window length of 32 is the mean length (\(1/\alpha \)) of treatment groups.

  2. 2.

    Because HDBSCAN is nonlinear, PHC works best when the neighbourhood is small.

References

  1. Bergin, R.J., Whitfield, K., White, V., Milne, R.L., Emery, J.D., et al.: Optimal care pathways: a national policy to improve quality of cancer care and address inequalities in cancer outcomes. J. Cancer Policy 25, 100254 (2020). https://doi.org/10.1016/j.jcpo.2020.100245

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Chicco, D. In: Siamese Neural Networks: An Overview, pp. 73–94. Springer, US (2020). https://doi.org/10.1007/978-1-0716-0826-53

  4. Choi, E., et al.: Multi-layer representation learning for medical concepts. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2016). https://doi.org/10.1145/2939672.2939823

  5. Dieng, A.B., Wang, C., Gao, J., Paisley, J.W.: Topicrnn: a recurrent neural network with long-range semantic dependency. In: ICLR (Poster) (2016)

    Google Scholar 

  6. Forster, K., et al.: Can concordance between actual care received and a pathway map be measured on a population level in Ontario? a pilot study. Current Oncol. 27(1), 27–33 (2020). https://doi.org/10.3747/co.27.5349

    Article  Google Scholar 

  7. Hinton, G.E.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  9. Hoyle, A.M., Goel, P., Resnik, P.: Improving neural topic models using knowledge distillation. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2020). https://doi.org/10.18653/1/2020.emnlp-main.137

  10. Huang, Z., Dong, W., Bath, P., Ji, L., Duan, H.: On mining latent treatment patterns from electronic medical records. Data Mining and Knowledge Discovery 29(4), 914–949 (2014). https://doi.org/10.1007/s10618-014-0381-y

    Article  MathSciNet  Google Scholar 

  11. Huang, Z., Ge, Z., Dong, W., He, K., Duan, H.: Probabilistic modeling personalized treatment pathways using electronic health records. J. Biomed. Inf. 86, 33–48 (2018). https://doi.org/10.1016/j.jbi.2018.08.004

    Article  Google Scholar 

  12. Johnson, A., Pollard, T., Mark III, R.: Mimic-iii clinical database (version 1.4). Physio Net 10, C2XW26 (2016)

    Google Scholar 

  13. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR 2015 : International Conference on Learning Representations 2015 (2015)

    Google Scholar 

  14. McInnes, L., Healy, J., Astels, S.: hdbscan: hierarchical density based clustering. J. Open Source Softw. 2(11), 205 (2017). https://doi.org/10.21105/joss.00205

    Article  Google Scholar 

  15. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction. arXiv (2018). http://arxiv.org/abs/1802.03426

  16. Mohler, J.L., et al.: Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J. National Comprehensive Cancer Netw. 17(5), 479–505 (2019). https://doi.org/10.6004/jnccn.2019.0023

  17. Mueller, A., Dredze, M.: Fine-tuning encoders for improved monolingual and zero-shot polylingual neural topic modeling. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1-2F2021.naacl-main.243

  18. Neculoiu, P., Versteegh, M., Rotaru, M.: Learning text similarity with siamese recurrent networks. In: Proceedings of the 1st Workshop on Representation Learning for NLP. Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/w16-1617

  19. Organization, W.H.: International classification of diseases : [9th] ninth revision, basic tabulation list with alphabetic index

    Google Scholar 

  20. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems. Curran Associates Inc, vol. 32, pp. 8024–8035 (2019). papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Reimers, N., Gurevych, I.: Sentence-BERT: Sentence embeddings using siamese BERT-networks. Assoc. Comput. Linguist. (2019). https://doi.org/10.18653/v1/d19-1410

    Article  Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  24. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.M.: Hierarchical dirichlet processes. J. Am. Statist. Assoc. 101(476), 1566–1581 (2006). https://doi.org/10.1198/016214506000000302

    Article  MathSciNet  MATH  Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. vol. 30, pp. 5998–6008 (2017)

    Google Scholar 

  26. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison. ACM Press (2009). https://doi.org/10.1145/1553374.1553511

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Caruana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caruana, A., Bandara, M., Catchpoole, D., Kennedy, P.J. (2022). Beyond Topics: Discovering Latent Healthcare Objectives from Event Sequences. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics