Skip to main content

Predicting Geological Material Types Using Ground Penetrating Radar

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

  • 1775 Accesses

Abstract

This paper presents a new machine learning feature extraction methodology for the identification of material transitions in a lateritic bauxite deposit using ground penetrating radar (GPR). This meth-odology allows for model results that quantitatively outperform typical feature extraction processes whilst providing qualitatively useful results. The geological domain in which this process was applied has a relatively large transition zone, which weakens the GPR characteristics that the typical feature extraction processes rely upon. While training on depth (92% accuracy), time and frequency (50–68% accuracy), wavelet decomposition (69% accuracy), and multi-signal fusion (50% accuracy) feature spaces produces results of varying quantitative success, all of them result in qualitatively poor results, often with results looking like white noise. Our proposed feature, Gaussian Ridge Extraction (GRE), achieves an accuracy of 83% while producing an estimate that is qualitatively reasonable. Combining GRE with a reduced set of features from the originally explored feature sets improves model accuracy to 87% and further strengthens the visual, qualitative estimate of the boundary transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altın, C., Er, O.: Comparison of different time and frequency domain feature extraction methods on elbow gesture’s EMG. Eur. J. Interdisc. Stud. 2(3), 35–44 (2016)

    Article  Google Scholar 

  2. Baili, J., Lahouar, S., Hergli, M., Amimi, A., Besbes, K.: Application of the discrete wavelet transform to denoise GPR signals. In: 2nd International Symposium on Communications, Control and Signal Processing, Marrakech, Morocco, p. 11 (2006)

    Google Scholar 

  3. Ball, A., O’Connor, L.: Geologist in the loop: a hybrid intelligence model for identifying geological boundaries from augmented ground penetrating radar. Geosciences 11(7), 284 (2021)

    Google Scholar 

  4. Bao, Q.-Z., Li, Q.-C., Chen, W.-C.: GPR data noise attenuation on the curvelet transform. Appl. Geophys. 11(3), 301–310 (2013). https://doi.org/10.1007/s11770-014-0444-2

    Article  Google Scholar 

  5. Bhattacharya, A., Sarkar, A., Basak, P.: Time domain multi-feature extraction and classification of human hand movements using surface EMG. In: 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1–5. IEEE (2017)

    Google Scholar 

  6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  8. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000)

    Article  Google Scholar 

  9. Erten, O., Kizil, M.S., Topal, E., McAndrew, L.: Spatial prediction of lateral variability of a laterite-type bauxite horizon using ancillary ground-penetrating radar data. Nat. Resour. Res. 22(3), 207–227 (2013)

    Article  Google Scholar 

  10. Erten, O., McAndrew, L., Kizil, M.S., Topal, E.: Incorporating fine-scale ground-penetrating radar data into the mapping of lateral variability of a laterite-type bauxite horizon. Min. Technol. 124(1), 1–15 (2015)

    Article  Google Scholar 

  11. Francke, J.: Applications of GPR in mineral resource evaluations. In: Proceedings of the XIII International Conference on Ground Penetrating Radar, pp. 1–5. IEEE (2010)

    Google Scholar 

  12. Francke, J.: A review of selected ground penetrating radar applications to mineral resource evaluations. J. Appl. Geophys. 81, 29–37 (2012)

    Article  Google Scholar 

  13. Frigui, H., Gader, P.: Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic \( k \)-nearest neighbor classifier. IEEE Trans. Fuzzy Syst. 17(1), 185–199 (2008)

    Article  Google Scholar 

  14. Gow, N.N., Lozej, G.P.: Bauxite. Geoscience Canada (1993)

    Google Scholar 

  15. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  16. Khushaba, R., Phinyomark, A., Al-Timemy, A., Scheme, E.: Recursive multi-signal temporal fusions with attention mechanism improves EMG feature extraction. IEEE Trans. Artif. Intell. 1(2), 139–150 (2020). https://doi.org/10.1109/TAI.2020.3046160

    Article  Google Scholar 

  17. Khushaba, R.N., Al-Ani, A., Al-Jumaily, A.: Differential evolution based feature subset selection. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE (2008)

    Google Scholar 

  18. Kim, K.S., Choi, H.H., Moon, C.S., Mun, C.W.: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions. Curr. Appl. Phys. 11(3), 740–745 (2011)

    Article  Google Scholar 

  19. Lotte, F.: A new feature and associated optimal spatial filter for EEG signal classification: waveform length. In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR 2012), pp. 1302–1305. IEEE (2012)

    Google Scholar 

  20. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017)

    Google Scholar 

  21. Morgan, M.: An investigation into the application of ground penetrating radar to the Weipa mining operation. Weipa, Comalco Minerals and Alumina (1995)

    Google Scholar 

  22. Narayan, Y., Mathew, L., Chatterji, S.: SEMG signal classification with novel feature extraction using different machine learning approaches. J. Intell. Fuzzy Syst. 35(5), 5099–5109 (2018)

    Article  Google Scholar 

  23. Negi, S., Kumar, Y., Mishra, V.: Feature extraction and classification for EMG signals using linear discriminant analysis. In: 2016 2nd International Conference on Advances in Computing, Communication, and Automation (ICACCA) (Fall), pp. 1–6. IEEE (2016)

    Google Scholar 

  24. Phinyomark, A., Limsakul, C., Phukpattaranont, P.: A novel feature extraction for robust EMG pattern recognition. arXiv preprint arXiv:0912.3973 (2009)

  25. Ralston, J.C., Strange, A.D.: An industrial application of ground penetrating radar for coal mining horizon sensing. In: 2015 International Symposium on Antennas and Propagation (ISAP), pp. 1–4. IEEE (2015)

    Google Scholar 

  26. Rio Tinto Group - Pacific Operations: Changes to Rio Tinto Aluminium Pacific Operations Ore Reserve and Mineral Resource Estimates, February 2021

    Google Scholar 

  27. Soltani, S., Hezarkhani, A.: Determination of realistic and statistical value of the information gathered from exploratory drilling. Nat. Resour. Res. 20(4), 207–216 (2011)

    Article  Google Scholar 

  28. Talebi, S.: The wavelet transform. Towards Data Science (2020)

    Google Scholar 

  29. Taylor, G., Eggleton, R., Foster, L., Morgan, C.: Landscapes and regolith of Weipa, northern Australia. Aust. J. Earth Sci. 55(S1), S3–S16 (2008)

    Article  Google Scholar 

  30. Travassos, X.L., Avila, S.L., Ida, N.: Artificial neural networks and machine learning techniques applied to ground penetrating radar: a review. Appl. Comput. Inform. (2020)

    Google Scholar 

  31. Zhang, D.: Wavelet Transform. In: Zhang, D. (ed.) Fundamentals of Image Data Mining. TCS, pp. 35–44. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17989-2_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fleming, O., Ball, A., Khushaba, R.N. (2022). Predicting Geological Material Types Using Ground Penetrating Radar. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics