Skip to main content

Dissipative Solitons in Microresonators

  • Chapter
  • First Online:
Dissipative Optical Solitons

Abstract

In this Chapter we will illustrate the state-of-art in the generation of dissipative solitons in Kerr microresonator-based systems. After a brief introduction on the origin of this field of research, we will discuss the modeling of these microcavities using the generalized Lugiato-Lefever equation. Further, we will discuss the different techniques used for dispersion engineering in these systems. We will then focus on the description of the frequency combs generated by microring resonators in the Kerr soliton regime and illustrate different schemes that have been developed in this context to grant better control of the microcavity dynamics. Finally, we will review the large number of applications that these objects have originated in several fields of optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vollmer F, Braun D, Libchaber A, et al (2002) Protein detection by optical shift of a resonant microcavity. Appl Phys Lett 80:4057–4059. https://doi.org/10.1063/1.1482797

    Article  ADS  Google Scholar 

  2. Arnold S, Khoshsima M, Teraoka I, et al (2003) Shift of whispering-gallery modes in microspheres by protein adsorption. Opt Lett 28:272. https://doi.org/10.1364/OL.28.000272

    Article  ADS  Google Scholar 

  3. Armani AM (2010) Single molecule detection using optical microcavities. In: Chremmos I, Schwelb O, Uzunoglu N (eds) Photonic Microresonator Research and Applications. Springer US, Boston, MA, pp. 253–273

    Google Scholar 

  4. Suh M-G, Yang Q-F, Yang KY, et al (2016) Microresonator soliton dual-comb spectroscopy. Science 354:600–603. https://doi.org/10.1126/science.aah6516

    Article  ADS  Google Scholar 

  5. Yu M, Okawachi Y, Griffith AG, et al (2017) Microresonator-based high-resolution gas spectroscopy. Opt Lett 42:4442. https://doi.org/10.1364/OL.42.004442

    Article  ADS  Google Scholar 

  6. Pfeifle J, Brasch V, Lauermann M, et al (2014) Coherent terabit communications with microresonator Kerr frequency combs. Nat Photonics 8:375–380. https://doi.org/10.1038/nphoton.2014.57

    Article  ADS  Google Scholar 

  7. Liang W, Eliyahu D, Ilchenko VS, et al (2015) High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat Commun 6:7957. https://doi.org/10.1038/ncomms8957

    Article  ADS  Google Scholar 

  8. Nguyen TG, Shoeiby M, Chu ST, et al (2015) Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt Express 23:22087. https://doi.org/10.1364/OE.23.022087

    Article  ADS  Google Scholar 

  9. Marin-Palomo P, Kemal JN, Karpov M, et al (2017) Microresonator-based solitons for massively parallel coherent optical communications. Nature 546:274–279. https://doi.org/10.1038/nature22387

    Article  ADS  Google Scholar 

  10. Obrzud E, Rainer M, Harutyunyan A, et al (2019) A microphotonic astrocomb. Nat Photonics 13:31–35. https://doi.org/10.1038/s41566-018-0309-y

    Article  ADS  Google Scholar 

  11. Suh M-G, Yi X, Lai Y-H, et al (2019) Searching for exoplanets using a microresonator astrocomb. Nat Photonics 13:25–30. https://doi.org/10.1038/s41566-018-0312-3

    Article  ADS  Google Scholar 

  12. Lefèvre-Seguin V, Haroche S (1997) Towards cavity-QED experiments with silica microspheres. Mater Sci Eng B 48:53–58. https://doi.org/10.1016/S0921-5107(97)00080-9

    Google Scholar 

  13. Reimer C, Kues M, Roztocki P, et al (2016) Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351:1176–1180. https://doi.org/10.1126/science.aad8532

    ADS  Google Scholar 

  14. Okawachi Y, Yu M, Luke K, et al (2016) Quantum random number generator using a microresonator-based Kerr oscillator. Opt Lett 41:4194. https://doi.org/10.1364/OL.41.004194

    ADS  Google Scholar 

  15. Kues M, Reimer C, Lukens JM, et al (2019) Quantum optical microcombs. Nat Photonics 13:170–179. https://doi.org/10.1038/s41566-019-0363-0

    ADS  Google Scholar 

  16. Wang F, Wang W, Niu R, et al (2020) Quantum key distribution with on-chip dissipative Kerr soliton. Laser Photon Rev 14:1900190. https://doi.org/10.1002/lpor.201900190

    ADS  Google Scholar 

  17. Reimer C, Zhang Y, Roztocki P, et al (2018) On-chip frequency combs and telecommunications signal processing meet quantum optics. Front Optoelectron 11:134–147. https://doi.org/10.1007/s12200-018-0814-0

    Google Scholar 

  18. Caspani L, Reimer C, Kues M, et al (2016) Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated quantum frequency combs. Nanophotonics 5:351–362

    Google Scholar 

  19. Reimer C, Kues M, Caspani L, et al (2015) Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip. Nat Commun 6:8236. https://doi.org/10.1038/ncomms9236

    ADS  Google Scholar 

  20. Sciara S, Roztocki P, Rimoldi C, et al (2019) Generation and processing of complex photon states with quantum frequency combs. IEEE Photonics Technol Lett 31:1862–1865. https://doi.org/10.1109/LPT.2019.2944564

    ADS  Google Scholar 

  21. Armani DK, Kippenberg TJ, Spillane SM, Vahala KJ (2003) Ultra-high-Q toroid microcavity on a chip. Nature 421:925–928. https://doi.org/10.1038/nature01371

    ADS  Google Scholar 

  22. Braginsky VB, Gorodetsky ML, Ilchenko VS (1989) Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys Lett A 137:393–397. https://doi.org/10.1016/0375-9601(89)90912-2

    ADS  Google Scholar 

  23. Gorodetsky ML, Savchenkov AA, Ilchenko VS (1996) Ultimate Q of optical microsphere resonators. Opt Lett 21:453. https://doi.org/10.1364/OL.21.000453

    ADS  Google Scholar 

  24. Yi X, Yang Q-F, Yang KY, et al (2015) Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2:1078. https://doi.org/10.1364/OPTICA.2.001078

    ADS  Google Scholar 

  25. Zhang S, Silver JM, Del Bino L, et al (2019) Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6:206. https://doi.org/10.1364/OPTICA.6.000206

    ADS  Google Scholar 

  26. Almeida VR, Barrios CA, Panepucci RR, Lipson M (2004) All-optical control of light on a silicon chip. Nature 431:1081–1084. https://doi.org/10.1038/nature02921

    ADS  Google Scholar 

  27. Duchesne D, Ferrera M, Razzari L, et al (2009) Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt Express 17:1865. https://doi.org/10.1364/OE.17.001865

    ADS  Google Scholar 

  28. Savchenkov AA, Matsko AB, Strekalov D, et al (2004) Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys Rev Lett 93:243905. https://doi.org/10.1103/PhysRevLett.93.243905

    ADS  Google Scholar 

  29. Herr T, Brasch V, Jost JD, et al (2014) Temporal solitons in optical microresonators. Nat Photonics 8:145–152. https://doi.org/10.1038/nphoton.2013.343

    ADS  Google Scholar 

  30. He Y, Yang Q-F, Ling J, et al (2019) Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica 6:1138. https://doi.org/10.1364/OPTICA.6.001138

    ADS  Google Scholar 

  31. Gong Z, Bruch A, Shen M, et al (2018) High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt Lett 43:4366. https://doi.org/10.1364/OL.43.004366

    ADS  Google Scholar 

  32. Wu C-L, Hung Y-J, Fan R, et al (2019) Tantalum pentoxide (Ta2O5) based athermal micro-ring resonator. OSA Contin 2:1198. https://doi.org/10.1364/OSAC.2.001198

    Google Scholar 

  33. Lu Z, Wang W, Zhang W, et al (2019) Deterministic generation and switching of dissipative Kerr soliton in a thermally controlled micro-resonator. AIP Adv 9:025314. https://doi.org/10.1063/1.5080128

    ADS  Google Scholar 

  34. Hausmann BJM, Bulu I, Venkataraman V, et al (2014) Diamond nonlinear photonics. Nat Photonics 8:369–374. https://doi.org/10.1038/nphoton.2014.72

    ADS  Google Scholar 

  35. Griffith AG, Lau RKW, Cardenas J, et al (2015) Silicon-chip mid-infrared frequency comb generation. Nat Commun 6:6299. https://doi.org/10.1038/ncomms7299

    ADS  Google Scholar 

  36. Brasch V, Geiselmann M, Herr T, et al (2016) Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351:357–360. https://doi.org/10.1126/science.aad4811

    ADS  MathSciNet  MATH  Google Scholar 

  37. Chen D, Kovach A, Shen X, et al (2017) On-chip ultra-high-Q silicon oxynitride optical resonators. ACS Photonics 4:2376–2381. https://doi.org/10.1021/acsphotonics.7b00752

    Google Scholar 

  38. Moss DJ, Morandotti R, Gaeta AL, Lipson M (2013) New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 7:597–607

    ADS  Google Scholar 

  39. Ferrera M, Duchesne D, Razzari L, et al (2012) Advanced integrated photonics in doped silica glass. Springer Ser. Opt. Sci. 47–92

    Google Scholar 

  40. Pasquazi A, Peccianti M, Razzari L, et al (2018) Micro-combs: A novel generation of optical sources. Phys Rep 729:1–81. https://doi.org/10.1016/j.physrep.2017.08.004

    ADS  MathSciNet  MATH  Google Scholar 

  41. Caspani L, Duchesne D, Dolgaleva K, et al (2011) Optical frequency conversion in integrated devices [Invited]. J Opt Soc Am B 28:A67. https://doi.org/10.1364/josab.28.000a67

    Google Scholar 

  42. Pasquazi A, Ahmad R, Rochette M, et al (2010) All-optical wavelength conversion in an integrated ring resonator. Opt Express 18:3858. https://doi.org/10.1364/oe.18.003858

    ADS  Google Scholar 

  43. Leo F, Coen S, Kockaert P, et al (2010) Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat Photonics 4:471–476. https://doi.org/10.1038/nphoton.2010.120

    ADS  Google Scholar 

  44. Razzari L, Duchesne D, Ferrera M, et al (2010) CMOS-compatible integrated optical hyper-parametric oscillator. Nat Photonics 4:41–45. https://doi.org/10.1038/nphoton.2009.236

    ADS  Google Scholar 

  45. Herr T, Hartinger K, Riemensberger J, et al (2012) Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat Photonics 6:480–487. https://doi.org/10.1038/nphoton.2012.127

    ADS  Google Scholar 

  46. Bao H, Cooper A, Chu ST, et al (2018) Type-II micro-comb generation in a filter-driven four wave mixing laser [Invited]. Photonics Res 6:B67. https://doi.org/10.1364/prj.6.000b67

    Google Scholar 

  47. Kippenberg TJ, Gaeta AL, Lipson M, Gorodetsky ML (2018) Dissipative Kerr solitons in optical microresonators. Science 361:eaan8083. https://doi.org/10.1126/science.aan8083

  48. Caspani L, Reimer C, Pasquazi A, et al (2013) A novel integrated laser source without a laser. SPIE Newsroom. https://doi.org/10.1117/2.1201312.005240

  49. Herr T, Gorodetsky ML, Kippenberg TJ (2015) Dissipative Kerr solitons in optical microresonators. In: Nonlinear Optical Cavity Dynamics. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 129–162

    Google Scholar 

  50. Lugiato LA, Lefever R (1987) Spatial dissipative structures in passive optical systems. Phys Rev Lett 58:2209–2211. https://doi.org/10.1103/PhysRevLett.58.2209

    ADS  MathSciNet  Google Scholar 

  51. Haelterman M, Trillo S, Wabnitz S (1992) Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt Commun 91:401–407. https://doi.org/10.1016/0030-4018(92)90367-Z

    ADS  Google Scholar 

  52. Lugiato LA, Prati F, Gorodetsky ML, Kippenberg TJ (2018) From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs. Philos Trans R Soc A Math Phys Eng Sci 376:20180113. https://doi.org/10.1098/rsta.2018.0113

    ADS  Google Scholar 

  53. Lugiato L, Prati F, Brambilla M (2015) Nonlinear optical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  54. Chembo YK, Menyuk CR (2013) Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys Rev A 87:053852. https://doi.org/10.1103/PhysRevA.87.053852

    ADS  Google Scholar 

  55. Coen S, Randle HG, Sylvestre T, Erkintalo M (2013) Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt Lett 38:37. https://doi.org/10.1364/OL.38.000037

    ADS  Google Scholar 

  56. Hansson T, Modotto D, Wabnitz S (2014) On the numerical simulation of Kerr frequency combs using coupled mode equations. Opt Commun 312:134–136. https://doi.org/10.1016/j.optcom.2013.09.017

    ADS  Google Scholar 

  57. Matsko AB, Savchenkov AA, Strekalov D, et al (2005) Optical hyperparametric oscillations in a whispering-gallery-mode resonator: Threshold and phase diffusion. Phys Rev A 71:033804. https://doi.org/10.1103/PhysRevA.71.033804

    ADS  Google Scholar 

  58. Drake TE, Stone JR, Briles TC, Papp SB (2019) Thermal decoherence and laser cooling of Kerr microresonator solitons. ArXiv 1903.00431

    Google Scholar 

  59. Ilchenko VS, Gorodetsky ML (1992) Thermal nonlinear effects in optical whispering gallery microresonators. Laser Phys 2:1004

    Google Scholar 

  60. Di Lauro L, Li J, Moss DJ, et al (2017) Parametric control of thermal self-pulsation in micro-cavities. Opt Lett 42:3407. https://doi.org/10.1364/OL.42.003407

    ADS  Google Scholar 

  61. Chembo YK, Strekalov D V., Yu N (2010) Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys Rev Lett 104:103902. https://doi.org/10.1103/PhysRevLett.104.103902

    ADS  Google Scholar 

  62. Cherenkov A V., Lobanov VE, Gorodetsky ML (2017) Dissipative Kerr solitons and Cherenkov radiation in optical microresonators with third-order dispersion. Phys Rev A 95:033810. https://doi.org/10.1103/PhysRevA.95.033810

    ADS  Google Scholar 

  63. Erkintalo M, Xu YQ, Murdoch SG, et al (2012) Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys Rev Lett 109:223904. https://doi.org/10.1103/PhysRevLett.109.223904

    ADS  Google Scholar 

  64. Lamont MRE, Okawachi Y, Gaeta AL (2013) Route to stabilized ultrabroadband microresonator-based frequency combs. Opt Lett 38:3478. https://doi.org/10.1364/OL.38.003478

    ADS  Google Scholar 

  65. Karpov M, Guo H, Kordts A, et al (2016) Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys Rev Lett 116:103902. https://doi.org/10.1103/PhysRevLett.116.103902

    ADS  Google Scholar 

  66. Blow KJ, Wood D (1989) Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J Quantum Electron 25:2665–2673. https://doi.org/10.1109/3.40655

    ADS  Google Scholar 

  67. Yang Q-F, Yi X, Yang KY, Vahala K (2017) Stokes solitons in optical microcavities. Nat Phys 13:53–57. https://doi.org/10.1038/nphys3875

    Google Scholar 

  68. Wang Y, Anderson M, Coen S, et al (2018) Stimulated Raman scattering imposes fundamental limits to the duration and bandwidth of temporal cavity solitons. Phys Rev Lett 120:053902. https://doi.org/10.1103/PhysRevLett.120.053902

    ADS  Google Scholar 

  69. Grudinin IS, Yu N (2015) Dispersion engineering of crystalline resonators via microstructuring. Optica 2:221. https://doi.org/10.1364/optica.2.000221

    ADS  Google Scholar 

  70. Yang KY, Beha K, Cole DC, et al (2016) Broadband dispersion-engineered microresonator on a chip. Nat Photonics 10:316–320. https://doi.org/10.1038/nphoton.2016.36

    ADS  Google Scholar 

  71. Foster MA, Turner AC, Sharping JE, et al (2006) Broad-band optical parametric gain on a silicon photonic chip. Nature 441:960–963. https://doi.org/10.1038/nature04932

    ADS  Google Scholar 

  72. Riemensberger J, Hartinger K, Herr T, et al (2012) Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition. Opt Express 20:27661. https://doi.org/10.1364/OE.20.027661

    ADS  Google Scholar 

  73. Zhang L, Bao C, Singh V, et al (2013) Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt Lett 38:5122. https://doi.org/10.1364/ol.38.005122

    ADS  Google Scholar 

  74. Kim S, Han K, Wang C, et al (2017) Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat Commun 8. https://doi.org/10.1038/s41467-017-00491-x

  75. Wang C, Zhang M, Yu M, et al (2019) Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nat Commun 10:978. https://doi.org/10.1038/s41467-019-08969-6

    ADS  Google Scholar 

  76. Ferrera M, Duchesne D, Razzari L, et al (2009) Low power four wave mixing in an integrated, micro-ring resonator with Q = 12 million. Opt Express 17:14098. https://doi.org/10.1364/oe.17.014098

    ADS  Google Scholar 

  77. Ferrera M, Razzari L, Duchesne D, et al (2008) Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat Photonics 2:737–740. https://doi.org/10.1038/nphoton.2008.228

    ADS  Google Scholar 

  78. Kordts A, Pfeiffer MHP, Guo H, et al (2016) Higher order mode suppression in high-Q anomalous dispersion SiN microresonators for temporal dissipative Kerr soliton formation. 2016 Conf Lasers Electro-Optics, CLEO 2016 41:452–455. https://doi.org/10.1364/ol.41.000452

  79. Kovach A, Chen D, He J, et al (2020) Emerging material systems for integrated optical Kerr frequency combs. Adv Opt Photonics 12:135. https://doi.org/10.1364/aop.376924

    ADS  Google Scholar 

  80. Leuthold J, Koos C, Freude W (2010) Nonlinear silicon photonics. Nat Photonics 4:535–544. https://doi.org/10.1038/nphoton.2010.185

    ADS  Google Scholar 

  81. Bao C, Taheri H, Zhang L, et al (2017) High-order dispersion in Kerr comb oscillators. J Opt Soc Am B 34:715. https://doi.org/10.1364/josab.34.000715

    ADS  Google Scholar 

  82. Turner AC, Manolatou C, Schmidt BS, et al (2006) Tailored anomalous group-velocity dispersion in silicon waveguides. Conf Lasers Electro-Optics 2006 Quantum Electron Laser Sci Conf CLEO/QELS 2006 14:4357–4362. https://doi.org/10.1109/CLEO.2006.4628293

  83. Klenner A, Mayer AS, Johnson AR, et al (2016) Gigahertz frequency comb offset stabilization based on supercontinuum generation in silicon nitride waveguides. Opt Express 24:11043. https://doi.org/10.1364/oe.24.011043

    ADS  Google Scholar 

  84. Tartara L, Cristiani I, Degiorgio V (2003) Blue light and infrared continuum generation by soliton fission in a microstructured fiber. Appl Phys B Lasers Opt 77:307–311. https://doi.org/10.1007/s00340-003-1172-0

    ADS  Google Scholar 

  85. Chemnitz M, Scheibinger R, Gaida C, et al (2018) Thermodynamic control of soliton dynamics in liquid-core fibers. Optica 5:695. https://doi.org/10.1364/OPTICA.5.000695

    ADS  Google Scholar 

  86. Cristiani I, Tediosi R, Tartara L, Degiorgio V (2004) Dispersive wave generation by solitons in microstructured optical fibers. Opt Express 12:124–135. https://doi.org/10.1364/OPEX.12.000124

    ADS  Google Scholar 

  87. Demas J, Steinvurzel P, Tai B, et al (2015) Intermodal nonlinear mixing with Bessel beams in optical fiber. Optica 2:14. https://doi.org/10.1364/optica.2.000014

    ADS  Google Scholar 

  88. Wright LG, Christodoulides DN, Wise FW (2017) Spatiotemporal mode-locking in multimode fiber lasers. Science 358:94–97. https://doi.org/10.1126/science.aao0831

    ADS  Google Scholar 

  89. Wright LG, Christodoulides DN, Wise FW (2015) Controllable spatiotemporal nonlinear effects in multimode fibres. Nat Photonics 9:306–310. https://doi.org/10.1038/nphoton.2015.61

    ADS  Google Scholar 

  90. Haboucha A, Leblond H, Salhi M, et al (2008) Coherent soliton pattern formation in a fiber laser. Opt Lett 33:524. https://doi.org/10.1364/ol.33.000524

    ADS  Google Scholar 

  91. Amrani F, Salhi M, Grelu P, et al (2011) Universal soliton pattern formations in passively mode-locked fiber lasers. Opt Lett 36:1545. https://doi.org/10.1364/OL.36.001545

    ADS  Google Scholar 

  92. Grelu P, Akhmediev N (2012) Dissipative solitons for mode-locked lasers. Nat Photonics 6:84–92. https://doi.org/10.1038/nphoton.2011.345

    ADS  Google Scholar 

  93. Qin H, Xiao X, Wang P, Yang C (2018) Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt Lett 43:1982. https://doi.org/10.1364/OL.43.001982

    ADS  Google Scholar 

  94. Okawachi Y, Lamont MRE, Luke K, et al (2014) Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt Lett 39:3535. https://doi.org/10.1364/OL.39.003535

    ADS  Google Scholar 

  95. Joshi C, Jang JK, Luke K, et al (2016) Thermally controlled comb generation and soliton modelocking in microresonators. Opt Lett 41:2565. https://doi.org/10.1364/OL.41.002565

    ADS  Google Scholar 

  96. Guo Y, Jafari Z, Agarwal AM, et al (2016) Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths. Opt Lett 41:4939. https://doi.org/10.1364/ol.41.004939

    ADS  Google Scholar 

  97. Huang SW, Liu H, Yang J, et al (2016) Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression. Sci Rep 6:1–7. https://doi.org/10.1038/srep26255

    Google Scholar 

  98. Pfeiffer MHP, Herkommer C, Liu J, et al (2017) Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4:684. https://doi.org/10.1364/OPTICA.4.000684

    ADS  Google Scholar 

  99. Husakou A V, Herrmann J (2001) Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys Rev Lett 87:203901. https://doi.org/10.1103/PhysRevLett.87.203901

    ADS  Google Scholar 

  100. Newman ZL, Maurice V, Drake T, et al (2019) Architecture for the photonic integration of an optical atomic clock. Optica 6:680. https://doi.org/10.1364/optica.6.000680

    ADS  Google Scholar 

  101. Yu M, Okawachi Y, Joshi C, et al (2018) Gas-phase microresonator-based comb spectroscopy without an external pump laser. ACS Photonics 5:2780–2785. https://doi.org/10.1021/acsphotonics.8b00579

    Google Scholar 

  102. Yu M, Okawachi Y, Griffith AG, et al (2018) Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat Commun 9:6–11. https://doi.org/10.1038/s41467-018-04350-1

    Google Scholar 

  103. Yi X, Yang Q-F, Zhang X, et al (2017) Single-mode dispersive waves and soliton microcomb dynamics. Nat Commun 8:14869. https://doi.org/10.1038/ncomms14869

    ADS  Google Scholar 

  104. Stone JR, Papp SB (2020) Harnessing dispersion in soliton microcombs to mitigate thermal noise. ArXiv 2006.10907v1

    Google Scholar 

  105. Ramelow S, Farsi A, Clemmen S, et al (2014) Strong polarization mode coupling in microresonators. Opt Lett 39:5134. https://doi.org/10.1364/ol.39.005134

    ADS  Google Scholar 

  106. Yu Z, Yuhang W, Xinxuan M, et al (2019) High-order mode suppressed microresonators based on multimode waveguides and a low-loss mode remover. Front Opt - Proc Front Opt + Laser Sci APS/DLS 1:3–4. https://doi.org/10.1364/FIO.2019.JTu4A.89

  107. Yang Q-F, Yi X, Yang KY, Vahala K (2016) Spatial-mode-interaction-induced dispersive waves and their active tuning in microresonators. Optica 3:1132. https://doi.org/10.1364/optica.3.001132

    ADS  Google Scholar 

  108. Xu X, Tan M, Corcoran B, et al (2020) Photonic perceptron based on a Kerr microcomb for high-speed, scalable, optical neural networks. Laser Photon Rev 2000070. https://doi.org/10.1002/lpor.202000070

  109. Cole DC, Lamb ES, Del’Haye P, et al (2017) Soliton crystals in Kerr resonators. Nat Photonics 11:671–676. https://doi.org/10.1038/s41566-017-0009-z

    ADS  Google Scholar 

  110. Bao H, Cooper A, Rowley M, et al (2019) Laser cavity-soliton microcombs. Nat Photonics 13:384–389. https://doi.org/10.1038/s41566-019-0379-5

    ADS  Google Scholar 

  111. Corcoran B, Tan M, Xu X, et al (2020) Ultra-dense optical data transmission over standard fibre with a single chip source. Nat Commun 11:2568. https://doi.org/10.1038/s41467-020-16265-x

    ADS  Google Scholar 

  112. Suh M-G, Vahala K (2018) Gigahertz-repetition-rate soliton microcombs. Optica 5:65. https://doi.org/10.1364/OPTICA.5.000065

    ADS  Google Scholar 

  113. Stern B, Ji X, Okawachi Y, et al (2018) Battery-operated integrated frequency comb generator. Nature 562:401–405. https://doi.org/10.1038/s41586-018-0598-9

    ADS  Google Scholar 

  114. Gaeta AL, Lipson M, Kippenberg TJ (2019) Photonic-chip-based frequency combs. Nat Photonics 13:158–169. https://doi.org/10.1038/s41566-019-0358-x

    ADS  Google Scholar 

  115. Matsko AB, Liang W, Savchenkov AA, Maleki L (2013) Chaotic dynamics of frequency combs generated with continuously pumped nonlinear microresonators. Opt Lett 38:525. https://doi.org/10.1364/ol.38.000525

    ADS  Google Scholar 

  116. Webb KE, Erkintalo M, Coen S, Murdoch SG (2016) Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Opt Lett 41:4613. https://doi.org/10.1364/ol.41.004613

    ADS  Google Scholar 

  117. Saha K, Okawachi Y, Shim B, et al (2013) Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt Express 21:1335. https://doi.org/10.1364/oe.21.001335

    ADS  Google Scholar 

  118. Strekalov DV, Yu N (2009) Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump. Phys Rev A 79:. https://doi.org/10.1103/physreva.79.041805

  119. Hansson T, Wabnitz S (2014) Bichromatically pumped microresonator frequency combs. Phys Rev A 90:013811. https://doi.org/10.1103/PhysRevA.90.013811

    ADS  Google Scholar 

  120. Papp SB, Del’Haye P, Diddams SA (2013) Parametric seeding of a microresonator optical frequency comb. Opt Express 21:17615. https://doi.org/10.1364/oe.21.017615

    ADS  Google Scholar 

  121. Papp SB, Beha K, Del’Haye P, et al (2014) Microresonator frequency comb optical clock. Optica 1:10. https://doi.org/10.1364/optica.1.000010

    ADS  Google Scholar 

  122. Udem T, Reichert J, Holzwarth R, Hänsch TW (1999) Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys Rev Lett 82:3568–3571. https://doi.org/10.1103/PhysRevLett.82.3568

    ADS  Google Scholar 

  123. Jost JD, Herr T, Lecaplain C, et al (2015) Counting the cycles of light using a self-referenced optical microresonator. Optica 2:706. https://doi.org/10.1364/OPTICA.2.000706

    ADS  Google Scholar 

  124. Brasch V, Lucas E, Jost JD, et al (2017) Self-referenced photonic chip soliton Kerr frequency comb. Light Sci Appl 6:e16202–e16202. https://doi.org/10.1038/lsa.2016.202

    Google Scholar 

  125. Yi X, Yang Q-F, Youl Yang K, Vahala KJ (2016) Active capture and stabilization of temporal solitons in microresonators. Opt Lett 41:2037. https://doi.org/10.1364/OL.41.002037

    ADS  Google Scholar 

  126. Del’Haye P, Coillet A, Fortier T, et al (2015) Phase coherent link of an atomic clock to a self-referenced microresonator frequency comb. arXiv 1511.08103

    Google Scholar 

  127. Lamb ES, Carlson DR, Hickstein DD, et al (2018) Optical-frequency measurements with a Kerr microcomb and photonic-chip supercontinuum. Phys Rev Appl 9:024030. https://doi.org/10.1103/PhysRevApplied.9.024030

    ADS  Google Scholar 

  128. Brasch V, Geiselmann M, Pfeiffer MHP, Kippenberg TJ (2016) Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt Express 24:29312. https://doi.org/10.1364/OE.24.029312

    ADS  Google Scholar 

  129. Wang W, Lu Z, Zhang W, et al (2018) Robust soliton crystals in a thermally controlled microresonator. Opt Lett 43:2002. https://doi.org/10.1364/OL.43.002002

    ADS  Google Scholar 

  130. Milanizadeh M, Aguiar D, Melloni A, Morichetti F (2019) Canceling thermal cross-talk effects in photonic integrated circuits. J Light Technol 37:1325–1332. https://doi.org/10.1109/JLT.2019.2892512

    Google Scholar 

  131. Jin L, Pasquazi A, Lauro L Di, et al (2016) Demonstration of bi- and multi-stability in a high order ring resonator. In: 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS). pp 1–3

    Google Scholar 

  132. Jin L, Di Lauro L, Pasquazi A, et al (2020) Optical multi-stability in a nonlinear high-order microring resonator filter. APL Photonics 5:56106. https://doi.org/10.1063/5.0002941

    Google Scholar 

  133. Rowley M, Wetzel B, Di Lauro L, et al (2019) Thermo-optical pulsing in a microresonator filtered fiber-laser: a route towards all-optical control and synchronization. Opt Express 27:19242–19254

    ADS  Google Scholar 

  134. Hansson T, Modotto D, Wabnitz S (2013) Dynamics of the modulational instability in microresonator frequency combs. Phys Rev A 88. https://doi.org/10.1103/physreva.88.023819

  135. Liang W, Ilchenko VS, Savchenkov AA, et al (2010) Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt Lett 35:2822. https://doi.org/10.1364/ol.35.002822

    ADS  Google Scholar 

  136. Kondratiev NM, Lobanov VE, Cherenkov A V., et al (2017) Self-injection locking of a laser diode to a high-Q WGM microresonator. Opt Express 25:28167. https://doi.org/10.1364/oe.25.028167

    ADS  Google Scholar 

  137. Pavlov NG, Koptyaev S, Lihachev G V., et al (2018) Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat Photonics 12:694–698. https://doi.org/10.1038/s41566-018-0277-2

    ADS  Google Scholar 

  138. Shen B, Chang L, Liu J, et al (2020) Integrated turnkey soliton microcombs. Nature 582:365–369. https://doi.org/10.1038/s41586-020-2358-x

    ADS  Google Scholar 

  139. Liang W, Ilchenko VS, Eliyahu D, et al (2015) Ultralow noise miniature external cavity semiconductor laser. Nat Commun 6:7371. https://doi.org/10.1038/ncomms8371

    ADS  Google Scholar 

  140. Bao H, Olivieri L, Rowley M, et al (2020) Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation. Phys Rev Res 2. https://doi.org/10.1103/physrevresearch.2.023395

  141. Pasquazi A, Caspani L, Peccianti M, et al (2013) Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip. Opt Express 21:13333. https://doi.org/10.1364/oe.21.013333

    ADS  Google Scholar 

  142. Pasquazi A, Peccianti M, Little BE, et al (2012) Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator. Opt Express 20:27355. https://doi.org/10.1364/oe.20.027355

    ADS  Google Scholar 

  143. Bao H, Cooper A, Di Lauro L, et al (2017) Repetition rate controllable filter-driven four wave mixing laser. 2017 Conf. Lasers Electro-Optics Eur. Eur. Quantum Electron. Conf.

    Google Scholar 

  144. Pasquazi A, Peccianti M, Chu ST, et al (2016) Novel ultrafast sources on chip: filter driven four wave mixing lasers, from high repetition rate to burst mode operation. Laser Reson. Microresonators, Beam Control XVIII

    Google Scholar 

  145. Peccianti M, Pasquazi A, Park Y, et al (2012) Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nat Commun 3:765. https://doi.org/10.1038/ncomms1762

    ADS  Google Scholar 

  146. Pasquazi A, Peccianti M, Clerici M, et al (2014) Collapse arrest in instantaneous Kerr media via parametric interactions. Phys Rev Lett 113:. https://doi.org/10.1103/physrevlett.113.133901

  147. Weiner AM, Heritage JP, Hawkins RJ, et al (1988) Experimental observation of the fundamental dark soliton in optical fibers. Phys Rev Lett 61:2445–2448. https://doi.org/10.1103/PhysRevLett.61.2445

    ADS  Google Scholar 

  148. Xu X, Tan M, Wu J, et al (2020) Broadband photonic RF channelizer with 92 channels based on a soliton crystal microcomb. J Light Technol 38:5116–5121. https://doi.org/10.1109/JLT.2020.2997699

    Google Scholar 

  149. Guo H, Karpov M, Lucas E, et al (2016) Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat Phys 13:94–102. https://doi.org/10.1038/nphys3893

    Google Scholar 

  150. Lucas E, Karpov M, Guo H, et al (2017) Breathing dissipative solitons in optical microresonators. Nat Commun 8:736. https://doi.org/10.1038/s41467-017-00719-w

    ADS  Google Scholar 

  151. Matsko AB, Savchenkov AA, Maleki L (2012) On excitation of breather solitons in an optical microresonator. Opt Lett 37:4856. https://doi.org/10.1364/ol.37.004856

    ADS  Google Scholar 

  152. Parra-Rivas P, Gomila D, Gelens L (2017) Coexistence of stable dark- and bright-soliton Kerr combs in normal-dispersion resonators. Phys Rev A 95:. https://doi.org/10.1103/physreva.95.053863

  153. Xue X, Xuan Y, Liu Y, et al (2015) Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photonics 9:594–600. https://doi.org/10.1038/nphoton.2015.137

    ADS  Google Scholar 

  154. Karpov M, Guo H, Pfeiffer MHP, et al (2017) Dynamics of soliton crystals in optical Microresonators. 2017 Conf. Lasers Electro-Optics, CLEO 2017 - Proc. 2017-Janua:1–2

    Google Scholar 

  155. Del’Haye P, Schliesser A, Arcizet O, et al (2007) Optical frequency comb generation from a monolithic microresonator. Nature 450:1214–1217. https://doi.org/10.1038/nature06401

    ADS  Google Scholar 

  156. Glauber RJ, Hall JL, Hänsch TW (2005) Advanced information on the Nobel Prize in Physics 2005. Quantum-mechanical theory of optical coherence - Laser-based precision spectroscopy and optical frequency comb techniques. General introduction. 1–14

    Google Scholar 

  157. Liu X, Bruch AW, Gong Z, et al (2018) Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 5:1279. https://doi.org/10.1364/OPTICA.5.001279

    ADS  Google Scholar 

  158. Dorche AE, Timucin D, Thyagarajan K, et al (2020) Advanced dispersion engineering of a III-Nitride micro-resonator for a blue/UV frequency comb. arXiv 2006.07391

    Google Scholar 

  159. Lee SH, Oh DY, Yang Q-F, et al (2017) Towards visible soliton microcomb generation. Nat Commun 8:1295. https://doi.org/10.1038/s41467-017-01473-9

    ADS  Google Scholar 

  160. Hansson T, Modotto D, Wabnitz S (2014) Mid-infrared soliton and Raman frequency comb generation in silicon microrings. Opt Lett 39:6747. https://doi.org/10.1364/OL.39.006747

    ADS  Google Scholar 

  161. Zhang S, Silver JM, Shang X, et al (2019) Terahertz wave generation using a soliton microcomb. Opt Express 27:35257. https://doi.org/10.1364/OE.27.035257

    ADS  Google Scholar 

  162. Ye J, Hall JL, Diddams SA (2000) Precision phase control of an ultrawide-bandwidth femtosecond laser: a network of ultrastable frequency marks across the visible spectrum. Opt Lett 25:1675. https://doi.org/10.1364/OL.25.001675

    ADS  Google Scholar 

  163. Diddams SA, Udem T, Bergquist JC, et al (2001) An optical clock based on a single trapped 199Hg+ ion. Science 293:825–828. https://doi.org/10.1126/science.1061171

    ADS  Google Scholar 

  164. Diddams SA, Vahala K, Udem T (2020) Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369:eaay3676. https://doi.org/10.1126/science.aay3676

  165. Spencer DT, Drake T, Briles TC, et al (2018) An optical-frequency synthesizer using integrated photonics. Nature 557:81–85. https://doi.org/10.1038/s41586-018-0065-7

    ADS  Google Scholar 

  166. Xu X, Tan M, Wu J, et al (2019) Microcomb-based photonic RF signal processing. IEEE Photonics Technol Lett 31:1854–1857. https://doi.org/10.1109/LPT.2019.2940497

    ADS  Google Scholar 

  167. Randel S, Kordts A, Freude W, et al (2018) Ultrafast optical ranging using microresonator soliton frequency combs. Science 359:887–891. https://doi.org/10.1126/science.aao3924

    ADS  Google Scholar 

  168. Suh M, Vahala K (2017) Soliton microcomb range measurement. 887:884–887. https://doi.org/10.1126/science.aao1968

    Google Scholar 

  169. Liu J, Tian H, Lucas E, et al (2020) Monolithic piezoelectric control of soliton microcombs. Nature 583:385–390. https://doi.org/10.1038/s41586-020-2465-8

    ADS  Google Scholar 

  170. Roztocki P, Morandotti R (2019) Astrocombs for extreme-precision spectroscopy. Nat Astron 3:135–136. https://doi.org/10.1038/s41550-019-0698-y

    ADS  Google Scholar 

  171. Liu L, Ye M, Yu Z (2020) Ultra-high peak rejection all-optical microwave filter based on the opto-mechanical rings. IEEE Photonics Technol Lett 1–1. https://doi.org/10.1109/LPT.2020.3013437

  172. De Vos K, Bartolozzi I, Schacht E, et al (2007) Silicon-on-Insulator microring resonator for sensitive and label-free biosensing. Opt Express 15:7610. https://doi.org/10.1364/OE.15.007610

    ADS  Google Scholar 

  173. Tu X, Chen S-L, Song C, et al (2019) Ultrahigh Q polymer microring resonators for biosensing applications. IEEE Photonics J 11:1–10. https://doi.org/10.1109/JPHOT.2019.2899666

    Google Scholar 

  174. Kues M, Reimer C, Wetzel B, et al (2017) Passively mode-locked laser with an ultra-narrow spectral width. Nat Photonics 11:159–162. https://doi.org/10.1038/nphoton.2016.271

    ADS  Google Scholar 

  175. Tait AN, de Lima TF, Zhou E, et al (2017) Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep 7:7430. https://doi.org/10.1038/s41598-017-07754-z

    ADS  Google Scholar 

  176. Feldmann J, Youngblood N, Wright CD, et al (2019) All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569:208–214. https://doi.org/10.1038/s41586-019-1157-8

    ADS  Google Scholar 

  177. Feldmann J, Youngblood N, Karpov M, et al (2020) Parallel convolution processing using an integrated photonic tensor core. 2002.00281v1

    Google Scholar 

  178. Miscuglio M, Sorger VJ (2020) Photonic tensor cores for machine learning. Appl Phys Rev 7:031404. https://doi.org/10.1063/5.0001942

    Google Scholar 

  179. Reimer C, Caspani L, Clerici M, et al (2014) Integrated frequency comb source of heralded single photons. Opt Express 22:6535. https://doi.org/10.1364/OE.22.006535

    ADS  Google Scholar 

  180. Roztocki P, Kues M, Reimer C, et al (2017) Practical system for the generation of pulsed quantum frequency combs. Opt Express 25:18940. https://doi.org/10.1364/OE.25.018940

    ADS  Google Scholar 

  181. Kues M, Reimer C, Roztocki P, et al (2017) On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546:622–626. https://doi.org/10.1038/nature22986

    ADS  Google Scholar 

  182. Imany P, Jaramillo-Villegas JA, Odele OD, et al (2018) 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. Opt Express 26:1825. https://doi.org/10.1364/OE.26.001825

    ADS  Google Scholar 

  183. Reimer C, Sciara S, Roztocki P, et al (2019) High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys 15:148–153. https://doi.org/10.1038/s41567-018-0347-x

    Google Scholar 

  184. Caspani L, Xiong C, Eggleton BJ, et al (2017) Integrated sources of photon quantum states based on nonlinear optics. Light Sci Appl 6:e17100–e17100. https://doi.org/10.1038/lsa.2017.100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Morandotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rimoldi, C. et al. (2022). Dissipative Solitons in Microresonators. In: Ferreira, M.F.S. (eds) Dissipative Optical Solitons. Springer Series in Optical Sciences, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-97493-0_12

Download citation

Publish with us

Policies and ethics