Skip to main content

Blooms and Buzzing Bees: Bridging Buzz Pollination and Biotremology

  • Chapter
  • First Online:
Biotremology: Physiology, Ecology, and Evolution

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 8))

Abstract

Approximately 6% of the world’s flowering plant species have specialised stamen morphologies that require mechanical stimulation (vibration) by bees in order to release pollen concealed within. This has given rise to the study of the phenomenon of buzz pollination. Although buzz pollination sits squarely within the discipline of biotremology, this link rarely has been made explicit. Our aim in this chapter is to bridge the gap that historically has existed between buzz pollination research and the discipline of biotremology. We will discuss what we know about bee-induced floral vibrations and compare them to other kinds of plant-borne vibrational signals. We will also highlight how certain experimental approaches developed by biotremology researchers have helped buzz pollination investigators better understand the complex behavioural and ecological interactions occurring between buzz pollinated plants and their bee visitors. We will then provide an overview of research methodologies for buzz pollination scientists and describe some of the more commonly used experimental approaches for recording and playback of bee-induced floral vibrations. By highlighting the many common themes existing between studies in buzz pollination and biotremology we hope to stimulate others to explore the many exciting new research avenues in this unique biotic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arceo-Gómez G, Martinez ML, Parra-Tabla V, Garcıa-Franco JG (2011) Anther and stigma morphology in mirror-image flowers of Chamaecrista chamaecristoides (Fabaceae): Implications for buzz pollination. Plant Biol 13(Suppl 1):19–24

    Article  PubMed  Google Scholar 

  • Arroyo-Correa B, Beattie C, Vallejo-Marín M (2019) Bee and floral traits affect the characteristics of the vibrations experienced by flowers during buzz-pollination. J Exp Biol. 222:jeb198176. https://doi.org/10.1242/jeb.198176

    Article  PubMed  Google Scholar 

  • Bauer U, Poppinga S, Müller UK (2020) Mechanical ecology--Taking biomechanics to the field. Integr Comp Biol icaa018. https://doi.org/10.1093/icb/icaa018

  • Bell PD (1980) Transmission of vibrations along plant stems: Implications for insect communication. Journal of the New York Entomological Society 88:210–216

    Google Scholar 

  • Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket Behavior and Neurobiology. Cornell University Press, Ithaca, London, pp 227–261

    Google Scholar 

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Philos Trans R Soc Lond B 353:407–419

    Article  Google Scholar 

  • Buchmann SL (1983) Buzz pollination in angiosperms. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold Company, New York, pp 73–113

    Google Scholar 

  • Buchmann SL (1985) Bees use vibration to aid pollen collection from non-poricidal flowers. J Kansas Entomol Soc 58:517–525

    Google Scholar 

  • Buchmann SL, Cane JH (1989) Bees assess pollen returns while sonicating Solanum flowers. Oecologia 81:289–294

    Article  PubMed  Google Scholar 

  • Buchmann SL, Hurley JP (1978) Biophysical model for buzz pollination in Angiosperms. J Theor Biol 72:639–657

    Article  CAS  PubMed  Google Scholar 

  • Buchmann SL, Jones CE, Colin LJ (1978) Vibratile pollination of Solanum douglasii and S. xanti (Solanaceae) in Southern California. Wasmann Journal of Biology 35:1–25

    Google Scholar 

  • Burkart A, Lunau K, Schlindwein C (2011) Comparative bioacoustical studies on flight and buzzing of neotropical bees. Journal of Pollination Ecology 6:118–124

    Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2010) Patterns of widespread decline in North American bumble bees. P Natl Acad Sci USA 108:662–667

    Article  Google Scholar 

  • Cardinal S, Buchmann SL, Russell AL (2018) The evolution of floral sonication, a pollen foraging behavior used by bees (Anthophila). Evolution 72:590–600. https://doi.org/10.1111/evo.13446

    Article  PubMed  PubMed Central  Google Scholar 

  • Casas J, Magal C, Sueur J (2007) Dispersive and non-dispersive waves through plants: Implications for arthropod vibratory communication. P Roy Soc Lond B 274:1087–1092

    Google Scholar 

  • Cocroft RB (1996) Insect vibrational defence signals. Nature 382:679–680

    Article  Google Scholar 

  • Cocroft RB, De Luca PA (2006) Size-frequency relationships in insect vibrational signals. In: Drosopolous S, Claridge MF (eds) Insect Sounds and Communication: Physiology, behaviour, ecology and evolution. CRC Press, Boca Raton, pp 109–120

    Google Scholar 

  • Cocroft RB, Rodrìguez RL (2005) The behavioral ecology of insect vibrational communication. BioScience 55:323–334

    Article  Google Scholar 

  • Cocroft RB, Gogala M, Hill PSM, Wessel A (2014a) Fostering research progress in a rapidly growing field. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying Vibrational Communication, vol 3. Springer-Verlag, Berlin, pp 3–12

    Google Scholar 

  • Cocroft RB, Hamel J, Su Q, Gibson J (2014b) Vibrational playback experiments: Challenges and solutions. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying Vibrational Communication, vol 3. Springer-Verlag, Berlin, pp 249–274

    Google Scholar 

  • Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev. Entomol 48:29–50

    Article  PubMed  CAS  Google Scholar 

  • Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol Entomol 25:196–205

    Article  Google Scholar 

  • Čokl A, Presern J, Virant-Doberlet M, Bagwell GJ, Millar JG (2004) Vibratory signals of the harlequin bug and their transmission through plants. Physiol Entomol 29:372–380

    Article  Google Scholar 

  • Čokl A, Zorovic M, Zunic A, Virant-Doberlet M (2005) Tuning of host plants with vibratory songs of Nezara viridula L (Heteroptera: Pentatomidae). J Exp Biol 208:1481–1488

    Article  PubMed  Google Scholar 

  • Colla SR, Packer L (2008) Evidence for decline in eastern North American bumblebees (Hymenoptera: Apidae), with special focus on Bombus affinis Cresson. Biodiversity and Conservation 17:1379–1391

    Article  Google Scholar 

  • Corbet SA, Huang SQ (2014) Buzz pollination in eight bumblebee-pollinated Pedicularis species: Does it involve vibration-induced triboelectric charging of pollen grains? Ann Bot 114:1665–1674. https://doi.org/10.1093/aob/mcu195

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbet SA, Chapman H, Saville N (1988) Vibratory pollen collection and flower form: Bumble-bees on Actinidia, Symphytum, Borago and Polygonatum. Funct Ecol 2:147–155

    Article  Google Scholar 

  • De Luca PA (2015) Mass correlates with increased mating success for older but not younger males in thornbug treehoppers. Ann Entomol Soc Am 108:222–228

    Article  Google Scholar 

  • De Luca PA, Cocroft RB (2009) Age-related changes in an insect mating signal have no effect on female choice. Behav Ecol Sociobiol 63:1787–1798

    Article  Google Scholar 

  • De Luca PA, Morris GK (1998) Courtship communication in meadow katydids: Female preference for large male vibrations. Behaviour 135:777–794

    Article  Google Scholar 

  • De Luca PA, Vallejo-Marín M (2013) What’s the buzz about? The ecology and evolutionary significance of buzz-pollination. Curr Opin Plant Biol 16:429–435

    Article  PubMed  Google Scholar 

  • De Luca PA, Bussière LF, Souto-Vilaros D, Goulson D, Mason AC, Vallejo-Marín M (2013) Variability in bumblebee pollination buzzes affects the quantity of pollen released from flowers. Oecologia 172:805–816

    Article  PubMed  Google Scholar 

  • De Luca PA, Cox DA, Vallejo-Marín M (2014) Comparison of pollination and defensive buzzes in bumblebees indicates species-specific and context-dependent vibrations. Naturwissenschaften 101:331–338

    Article  PubMed  CAS  Google Scholar 

  • De Luca PA, Giebink N, Mason AC, Papaj DR, Buchmann SL (2018) How well do acoustic recordings characterize properties of bee (Anthophila) floral sonication vibrations? Bioacoustics. https://doi.org/10.1080/09524622.2018.1511474

  • De Luca PA, Buchmann SL, Galen C, Mason AC, Vallejo-Marín M (2019) Does body size predict the buzz-pollination frequencies used by bees? Ecol Evol 9:4875–4887

    Article  PubMed  PubMed Central  Google Scholar 

  • Dierkes S, Barth FG (1995) Mechanism of signal production in the vibratory communication of the wandering spider Cupiennius getazi (Arachnida, Araneae). J Comp Physiol A 176:31–44

    Article  Google Scholar 

  • Dulberger R, Smith MB, Bawa KS (1994) The stigmatic orifice in Cassia, Senna, and Chamaecrista (Caesalpinaceae): Morphological variation, function during pollination, and possible adaptive significance. Am J Bot 81:1390–1396

    Article  Google Scholar 

  • Eberhard MJB, Metze D, Küpper SC (2019) Causes of variability in male vibratory signals and the role of female choice in Mantophasmatodea. Behav Process 166:103907

    Article  Google Scholar 

  • Elias DO, Lee N, Hebets EA, Mason AC (2006) Seismic signal production in a wolf spider: Parallel versus serial multi-component signals. J Exp Biol 209:1074–1084

    Article  PubMed  Google Scholar 

  • Endler JA (2014) Foreward: The emerging field of tremology. In: Cocroft RB, Gogala M, Hill PSM, Wessel A (eds) Studying Vibrational Communication. Springer, Berlin Heidelberg, pp vii–x

    Google Scholar 

  • Gibson JS, Cocroft RB (2018) Vibration-guided mate searching in treehoppers: directional accuracy and sampling strategies in a complex sensory environment. J Exp Biol 221(6):jeb175083

    Article  PubMed  Google Scholar 

  • Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1–16

    Article  CAS  Google Scholar 

  • Harder LD, Barclay MR (1994) The functional significance of poricial anthers and buzz pollination: controlled pollen removal from Dodecatheon. Funct Ecol 8:509–517

    Article  Google Scholar 

  • Hebets EA, Elias DO, Mason AC, Miller GL, Stratton GE (2008) Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Anim Behav 75:605–615

    Article  Google Scholar 

  • Henry CS (1980) The importance of low-frequency, substrate-borne sounds in lacewing communication (Neuroptera: Chrysopidae). Ann Entomol Soc Am 73:617–621

    Article  Google Scholar 

  • Henry CS, Martinez-Wells ML (2006) Testing the ability of males and females to respond to altered songs in the duetting green lacewing, Chrysoperla plorabunda (Neuroptera: Chrysopidae). Behav Ecol Sociobiol 61:39–51

    Article  Google Scholar 

  • Henry CS, Wells MLM, Simon CM (1999) Convergent evolution of courtship songs among cryptic species of the Carnea group of green lacewings (Neuroptera: Chrysopidae: Chrysoperla). Evolution 53:1165–1179

    PubMed  Google Scholar 

  • Hill PSM (2008) Vibrational Communication in Animals. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hill PSM, Wessel A (2016) Biotremology. Curr Biol 26:R187–R191

    Article  CAS  PubMed  Google Scholar 

  • Hrncir M, Schmidt VM, Schorkopf DLP, Jarau S, Zucchi R, Barth FG (2006) Vibrating the food receivers: A direct way of signal transmission in stingless bees (Melipona seminigra). J Comp Physiol A 192:879–887

    Article  Google Scholar 

  • Hunt RE, Morton TL (2001) Regulation of chorusing in the vibrational communication system of the leafhopper Graminella nigrifrons. Am Zool 41:1222–1228

    Google Scholar 

  • Hunt RE, Nault LR (1991) Roles of interplant movement, acoustic communication, and phonotaxis in mate-location behavior of the leafhopper Graminella nigrifrons. Behav Ecol Sociobiol 28:315–320

    Article  Google Scholar 

  • Josephson RK, Malamud JG, Stokes DR (2000) Asynchronous muscle: A primer. J Exp Biol 203:2713–2722

    Article  CAS  PubMed  Google Scholar 

  • Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318

    Article  Google Scholar 

  • King MJ (1993) Buzz foraging mechanism in bumble bees. J Apic Res 32:41–49

    Article  Google Scholar 

  • King MJ, Buchmann SL (1995) Bumble bee-initiated vibration release mechanism of Rhododendron pollen. Am J Bot 82:1407–1411

    Article  Google Scholar 

  • King MJ, Buchmann SL (1996) Sonication dispensing of pollen from Solanum laciniatum flowers. Funct Ecol 10:449–456

    Article  Google Scholar 

  • King MJ, Buchmann SL (2003) Floral sonication by bees: Mesosomal vibration by Bombus and Xylocopa, but not Apis (Hymenoptera: Apidae), ejects pollen from poricidal anthers. J Kansas Entomol Soc 76:295–305

    Google Scholar 

  • King MJ, Lengoc L (1993) Vibratory pollen collection dynamics. Transactions of the American Society of Agricultural Engineers 36:135–140

    Article  Google Scholar 

  • King MJ, Buchmann SL, Spangler HG (1996) Activity of asynchronous flight muscle from two bee families during sonication (buzzing). J Exp Biol 199:2317–2321

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Saxena KN (1985) Certain environmental factors influencing the acoustic communication in the sexual behaviour of the leafhopper Amrasca devastans (Distant) (Homoptera: Cicadellidae). Appl Entomol Zool 20:199–209

    Article  Google Scholar 

  • Larson BM, Scheme B (1999a) The ecology of pollen limitation in buzz-pollinated Rhexia virginica (Melastomataceae). J Ecol 87:371–381

    Article  Google Scholar 

  • Larson BM, Scheme B (1999b) The pollination ecology of buzz-pollinated Rhexia virginica (Melastomataceae). Am J Bot 86:502–511

    Article  CAS  PubMed  Google Scholar 

  • Macior LW (1964) Experimental study of floral ecology of Dodecatheon meadia. Am J Bot 51:96–108

    Article  Google Scholar 

  • Macior LW (1968) Pollination adaptation in Pedicularis groenlandica. Am J Bot 55:927–932

    Article  Google Scholar 

  • Marazzi B, Conti E, Endress PK (2007) Diversity in anthers and stigmas in the buzz-pollinated genus Senna (Leguminosae, Cassiinae). Int J Plant Sci 168:371–391

    Article  Google Scholar 

  • McNett GD, Cocroft RB (2008) Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650–656

    Article  Google Scholar 

  • McNett GD, Miles RN, Homentcovschi D, Cocroft RB (2006) A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:1245–1251

    Article  Google Scholar 

  • McNett GD, Luan LH, Cocroft RB (2010) Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:2043–2051

    Article  Google Scholar 

  • McVean A, Field LH (1996) Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera). J Zool 239:101–122

    Article  Google Scholar 

  • Mesquita-Neto JN, Costa BKP, Schlindwein C (2017) Heteranthery as a solution to the demand for pollen as food and for pollination—legitimate flower visitors reject flowers without feeding anthers. Plant Biol 19:942–950

    Article  CAS  PubMed  Google Scholar 

  • Mhatre N, Sivalinghem S, Mason AC (2018) Posture controls mechanical tuning in the black widow spider mechanosensory system. bioRxiv. https://doi.org/10.1101/123456

  • Michael SCJ, Appel HA, Cocroft RB (2019) Methods for replicating leaf vibrations induced by insect herbivores. In: Gassmann W (ed) Plant innate immunity: methods and protocols. Humana Press, New York, pp 141–158

    Chapter  Google Scholar 

  • Michelsen A, Nocke H (1974) Biophysical aspects of sound communication in insects. Adv Insect Physiol 10:247–296

    Article  Google Scholar 

  • Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269–281

    Article  Google Scholar 

  • Miklas N, Stritih N, Čokl A, Virant-Doberlet M, Renou M (2001) The influence of substrate on male responsiveness to the female calling song in Nezara viridula. J Insect Behav 14:313–332

    Article  Google Scholar 

  • Miles CI, Allison BE, Losinger MJ, Su QT, Miles RN (2017) Motor and mechanical bases of the courtship call of the male treehopper Umbonia crassicornis. J Exp Biol 220:1915–1924

    PubMed  Google Scholar 

  • Miranda X (2006) Substrate-borne signal repertoire and courtship jamming by adults of Ennya chrysura (Hemiptera: Membracidae). Ann Entomol Soc Am 99:374–386

    Article  Google Scholar 

  • Mitomi M, Ichikawaa T, Okamoto H (1984) Morphology of the vibration-producing organ in adult rice brown planthopper, Nilaparvata lugens (STAL): Homoptera: Delphacidae. Appl Entomol Zool 19:407–417

    Article  Google Scholar 

  • Moreira GRP (1993) Reproductive biology of the stream-dwelling stonefly, Agnetina capitata (Pictet) (Plecoptera: Perlidae). Dissertation, Cornell University, Ithaca, NY

    Google Scholar 

  • Morgan T, Whitehorn PR, Lye GC, Vallejo-Marín M (2016) Floral sonication is an innate behaviour in bumblebees that can be fine-tuned with experience in manipulating flowers. J Insect Behav 29:233–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris GK (1980) Calling display and mating behaviour of Copiphora rhinoceros Pictet (Orthoptera: Tettigoniidae). Anim Behav 28:42–51

    Article  Google Scholar 

  • Nunes-Silva P, Hrncir M, Shipp L, Kevan P, Imperatriz-Fonseca VL (2013) The behaviour of Bombus impatiens (Apidae, Bombini) on tomato (Lycopersicon esculentum Mill., Solanaceae) flowers: Pollination and reward perception. J Pollinat Ecol 11:33–40

    Article  Google Scholar 

  • Ossiannilsson F (1949) Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish Homoptera Auchenorrhyncha. Opuscula Entomol Suppl X:1–146

    Google Scholar 

  • Papaj DR, Buchmann SL, Russell AL (2017) Division of labor of anthers in heterantherous plants: flexibility of bee pollen collection behavior may serve to keep plants honest. Arthropod Plant Interactions 11:307–315

    Article  Google Scholar 

  • Pellissier L, Alvarez N, Guisan A (2012) Pollinators as drivers of plant distributions and assemblage into communities. In: Patiny S (ed) Evolution of plant-pollinator relationships. Cambridge University Press, New York, pp 392–413

    Google Scholar 

  • Pringle JWS (1949) The excitation and contraction of the flight muscles of insects. J Physiol (Lond) 108:226–232

    Article  CAS  Google Scholar 

  • Pritchard DJ, Vallejo-Marín M (2020) Floral vibrations by buzz-pollinating bees achieve higher frequency, velocity and acceleration than flight and defence vibrations. J Exp Biol. https://doi.org/10.1242/jeb.220541

  • Rebar D, Hoebel G, Rodriguez RL (2012) Vibrational playback by means of airborne stimuli. J Exp Biol 215:3513–3518

    PubMed  Google Scholar 

  • Rodrigues EV, Riguette JR, Pereira HRC, Tesch JA, Silva AG (2018) An affordable apparatus for fine-controlled emulation of buzzing frequencies of bees for the testing hypothesis in buzz interactions. Ecol Evol 8:7667–7672

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez RL, Cocroft RB (2006) Divergence in female duetting signals in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Ethology 112:1231–1238

    Article  Google Scholar 

  • Rodríguez RL, Sullivan LE, Cocroft RB (2004) Vibrational communication and reproductive isolation in the Enchenopa binotata species complex of treehoppers (Hemiptera: Membracidae). Evolution 58:571–578

    Article  PubMed  Google Scholar 

  • Rodríguez RL, Ramaswamy K, Cocroft RB (2006) Evidence that female preferences have shaped male signal evolution in a clade of specialized plant-feeding insects. Proc R Soc Lond B 273:2585–2593

    Google Scholar 

  • Rosi-Denadai CA, Araújo PCS, de Oliveira Campos LA, Cosme L Jr, Guedes RNC (2018) Buzz-pollination in neotropical bees: genus-dependent frequencies and lack of optimal frequency for pollen release. Insect Sci. https://doi.org/10.1111/1744-7917.12602

  • Rovner JS, Barth FG (1981) Vibratory communication through living plants by a tropical wandering spider. Science 214:464–466

    Article  CAS  PubMed  Google Scholar 

  • Russell AL, Golden RE, Leonard AE, Papaj DR (2015) Bees learn preferences for plant species that offer only pollen as a reward. Behav Ecol 27:731–740

    Article  Google Scholar 

  • Russell AL, Leonard AS, Gillette HD, Papaj DR (2016) Concealed floral rewards and the role of experience in floral sonication by bees. Anim Behav 120:83–91

    Article  Google Scholar 

  • Russell AL, Buchmann SL, Papaj DR (2017) How a generalist bee achieves high efficiency of pollen collection on diverse floral resources. Behav Ecol 28:991–1003. https://doi.org/10.1093/beheco/arx058

    Article  Google Scholar 

  • Solis-Montero L, Vallejo-Marin M (2017) Does the morphological fit between flowers and pollinators affect pollen deposition? An experimental test in a buzz-pollinated species with anther dimorphism. Ecol Evol 7:2706–2715. https://doi.org/10.1002/ece3.2897

    Article  PubMed  PubMed Central  Google Scholar 

  • Speaks CE (1999) Introduction to sound: acoustics for the hearing and speech sciences. Singular Publishing Group, San Diego CA

    Google Scholar 

  • Sueur J (2018) Sound analysis and synthesis with R. Springer, Cham, Switzerland

    Book  Google Scholar 

  • Sullivan-Beckers LE, Hebets EA (2014) Tactical adjustment of signalling leads to increased mating success and survival. Anim Behav 93:11–17

    Article  Google Scholar 

  • Switzer C, Combes S (2017) Bumblebee sonication behavior changes with plant species and environmental conditions. Apidologie 48:223–233. https://doi.org/10.1007/s13592-016-0467-1

    Article  Google Scholar 

  • Switzer C, Hogendoorn K, Ravi S, Combes S (2016) Shakers and head bangers: differences in sonication behavior between Australian Amegilla murrayensis (blue-banded bees) and North American Bombus impatiens (bumblebees). Arthropod Plant Interactions 10:1–8

    Article  Google Scholar 

  • Switzer C, Russell AL, Papaj DR, Combes SA, Hopkins R (2019) Sonicating bees demonstrate flexible pollen extraction without instrumental learning. Curr Zool. https://doi.org/10.1093/cz/zoz013

  • Teppner H (2018) The first records of vibratory pollen-collection by bees. Phyton Annales Rei Botanicae 57:135–141

    Google Scholar 

  • Tercel MP, Veronesi F, Pope TW (2018) Phylogenetic clustering of wingbeat frequency and flight-associated morphometrics across insect orders. Physiol Entomol 43:149–157

    Article  Google Scholar 

  • Vallejo-Marín M (2019) Buzz pollination: studying bee vibrations on flowers. New Phytol. https://doi.org/10.1111/nph.15666

  • Vallejo-Marín M, Da Silva EM, Sargent RD, Scheme B (2010) Trait correlates and functional signficance of heteranthery in flowering plants. New Phytol 188:418–425

    Article  PubMed  Google Scholar 

  • Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop Entomol 33:121–134

    Article  Google Scholar 

  • Wells MM, Henry CS (1992) The role of courtship songs in reproductive isolation among populations of green lacewings of the genus Chrysoperla (Neuroptera: Chrysopidae). Evolution 46:31–42

    Article  PubMed  Google Scholar 

  • Zeigler DD, Stewart KW (1977) Drumming behavior of eleven nearctic stonefly (Plecoptera) species. Ann Entomol Soc Am 70:495–505

    Article  Google Scholar 

  • Zeigler DD, Stewart KW (1985) Age effects on drumming behavior of Pteronarcella badia (Plecoptera) males. Entomol News 96:157–160

    Google Scholar 

Download references

Acknowledgments

We thank Peggy Hill for inviting us to contribute to this chapter about buzz pollination and its important links to the discipline of biotremology. PAD appreciates the generosity of the University of The Bahamas for supporting this work. MVM was supported by a Leverhulme Trust Research Grant (RPG-2018-235). Kristen Brochu read an earlier version of this work and provided helpful comments that improved its clarity. This chapter was also greatly improved from the insights and suggestions offered by Peggy Hill. We dedicate this chapter to Dr. Reginald B. Cocroft, whose pioneering work examining vibrational communication in treehoppers inspired a new generation of biotremology researchers, including us. Thank you, Rex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Anthony De Luca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Luca, P.A., Vallejo-Marín, M. (2022). Blooms and Buzzing Bees: Bridging Buzz Pollination and Biotremology. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-030-97419-0_11

Download citation

Publish with us

Policies and ethics