Skip to main content

From Radiation and Space Exploration to the Fractional Calculus

  • Conference paper
  • First Online:
New Perspectives on Nonlinear Dynamics and Complexity

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 35))

  • 216 Accesses

Abstract

We start with some basic mathematical statements about the roots of the Fractional Calculus, with a historical touch. At the same time, we describe the mathematical context and the basic definitions.

The Factional Calculus allows the interpolation among different families of operators, and in this framework, we describe some new mathematical scenarios related to Classical and Quantum Mechanics.

Finally, we consider some applications in the context of the Martian Exploration Missions. More precisely, we consider two main issues related to the electromagnetic radiation: The atmospheric dust dynamics and the invisibility and cloaking effects of new dielectric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Oldham, J. Spanier, The Fractional Calculus (Academic Press, 1974)

    Google Scholar 

  2. S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, 1993)

    Google Scholar 

  3. P. Naumkin, I. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves (American Mathematical Society, 1994)

    Google Scholar 

  4. R. Baillie, M. King, Fractional differencing and long memory processes. J. Econometrics 73, 1–324 (1996)

    Article  MATH  Google Scholar 

  5. I. Podlubny, Fractional Differential Equations (Academic Press, 1999)

    Google Scholar 

  6. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, 2000)

    Google Scholar 

  7. R. Magin, Fractional Calculus in Bioengineering (Begell House Publishers, 2006)

    Google Scholar 

  8. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  9. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, 2010)

    Google Scholar 

  10. R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions. Related Topics and Applications (Springer, 2014)

    Google Scholar 

  11. A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel. Theory and application to heat transfer model. Therm. Sci. 20, 763–769 (2016)

    Google Scholar 

  12. M. Ortigueira, J. Machado, Which derivative? Fractal Fract. 1, 3 (2017)

    Article  Google Scholar 

  13. B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Springer, 2003)

    Google Scholar 

  14. A. Rocco, B. West, Fractional calculus and the evolution of fractal phenomena. Physica A 265, 535–546 (1999)

    Article  Google Scholar 

  15. L. Vázquez, Fractional diffusion equations with internal degrees of freedom. J. Comp. Math. 21, 491–494 (2003)

    MathSciNet  MATH  Google Scholar 

  16. G. Turchetti, D. Usero, L. Vázquez, Hamiltonian systems with fractional time derivative. Tamsui Oxford J. Math. Sci. 18, 31–44 (2002)

    MathSciNet  MATH  Google Scholar 

  17. L. Vázquez, R. MacKay, M. Zorzano (eds.), Fractional Derivative: A New Formulation for Damped Systems (World Scientific, 2003). https://doi.org/10.1142/9789812704627_0030

  18. L. Vázquez, R. Vilela-Mendes, Fractionally coupled solutions of the diffusion equation. Appl. Math. Comput. 141, 125–130 (2003)

    MathSciNet  MATH  Google Scholar 

  19. G. Dattoli, C. Cesarano, P. Ricci, L. Vázquez, Special polynomials and fractional calculus. Math. Comput. Model. 37, 729–733 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Kilbas, T. Pierantozzi, J. Trujillo, L. Vázquez, On the solution of fractional evolution equations. J. Phys. A Math. General 37, 3271–3283 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Vázquez, A fruitful interplay: From nonlocality to fractional calculus, in Nonlinear Waves: Classical and Quantum Aspects. NATO Science Series II: Mathematics, Physics and Chemistry, ed. by F. Abdullaev, V. Konotop, vol. 153 (Springer, 2004), pp. 129–133. https://doi.org/10.1007/1-4020-2190-9_10

  22. L. Vázquez, Una panorámica del cálculo fraccionario y sus aplicaciones. Rev. Real Acad. Cienc. Exactas Físicas Naturales 98, 17–25 (2004)

    Google Scholar 

  23. L. Vázquez, Singularity analysis of a nonlinear fractional differential equation. Rev. Real Acad. Cienc. A Mat. 99(2), 211–217 (2005)

    MathSciNet  MATH  Google Scholar 

  24. L. Vázquez, D. Usero, Ecuaciones no locales y modelos fraccionarios. Rev. Real Acad. Cienc. Exactas Físicas Naturales 99, 203–223 (2005)

    Google Scholar 

  25. T. Pierantozzi, L. Vázquez, An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like. J. Math. Phys. 46, 113512 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Córdoba, L. Vázquez, Characterization of atmospheric aerosols by an in-situ photometric technique in planetary environments, in First Jet Propulsion Laboratory In Situ Instruments Workshop, SPIE, vol. 4878 (2003)

    Google Scholar 

  27. R. Vilela-Mendes, L. Vázquez, The dynamical nature of a backlash system with and without fluid friction. Nonlinear Dyn. 47, 363–366 (2007)

    Article  MATH  Google Scholar 

  28. L. Vázquez, From Newton equation to fractional diffusion and wave equations. Adv. Difference Equations, 169421 (2011). https://doi.org/10.1155/2011/169421

  29. L. Vázquez, J. Trujillo, M. Velasco, Fractional heat equation and the second law of thermodynamics. Fract. Calculus Appl. Anal. 14(3), 334–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Jiménez, J. González, L. Vázquez, Fractional Duffing’s equation and geometrical resonance. Int. J. Bifurcation Chaos 23, 1350089 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Vázquez, S. Jiménez, Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems (Springer, 2013)

    Google Scholar 

  32. J. Díaz, T. Pierantozzi, L. Vázquez, Finite time extinction phenomenon for some nonlinear fractional evolution equations and related properties. Electron. J. Differential Equations 2016(239), 1–13 (2016)

    MATH  Google Scholar 

  33. M. Velasco, D. Usero, S. Jiménez, J. Vázquez-Poletti, L. Vázquez, M. Mortazavi, About some possible implementations of the fractional calculus. Mathematics 8, 893 (2020). https://doi.org/10.3390/math8060893

    Article  Google Scholar 

  34. P. Gierasch, R. Goody, The effect of dust on the temperature of the Martian atmosphere. J. Atmos. Sci. 29, 400–402 (1972)

    Article  Google Scholar 

  35. M. Lemmon, M. Wolff, J. Bell, M. Smith, B. Cantor, P. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the mars exploration rover mission. Icarus 251, 96–111 (2015)

    Article  Google Scholar 

  36. R. Haberle, R. Clancy, F. Forget, M. Smith, R. Zurek, The Atmosphere and Climate of Mars (Cambridge University Press, 2017). https://doi.org/10.1017/9781139060172

  37. A. Angstrom, On the atmospheric transmission of Sun radiation and on dust in the air. Geografiska Annaler 11, 156–166 (1929)

    Google Scholar 

  38. V. Cachorro, A. de Frutos, J. Casanova, Determination of the Angstrom turbidity parameters. Appl. Opt. 26(15), 3069–3076 (1987)

    Article  Google Scholar 

  39. D. Kaskaoutis, H. Kambezidis, Investigation into the wavelength dependence of the aerosol optical depth in the Athens area. Q. J. R. Meteorol. Soc. 132, 2217–2234 (2006)

    Article  Google Scholar 

  40. K. Diethelm, The Analysis of Fractional Differential Equations (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  41. D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus. Models and Numerical Methods (World Scientific, Singapore, 2012)

    Google Scholar 

  42. H. Sun, W. Chen, C. Li, Y. Chen, Fractional differential models for anomalous diffusion. Physica A Stat. Mech. Appl. 389(14), 2719–2724 (2010)

    Article  Google Scholar 

  43. W. Chen, H. Sun, X. Zhang, D. Korošak, Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59(5), 1754–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Chen, Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 28(4), 923–929 (2006)

    Article  MATH  Google Scholar 

  45. G. Zaslavsky, D. Baleanu, J. Tenreiro, Fractional differentiation and its applications. Phys. Scr. T136, 011001 (2009)

    Article  Google Scholar 

  46. M. Velasco, D. Usero, S. Jiménez, C. Aguirre, L. Vázquez, Mathematics and Mars exploration. Pure Appl. Geophys. 172, 33–47 (2015)

    Article  Google Scholar 

  47. S. Jiménez, D. Usero, L. Vázquez, M. Velasco, Fractional diffusion models for the atmosphere of mars. Fractal Fract. 2, 1 (2018). https://doi.org/10.3390/fractalfract2010001

    Article  Google Scholar 

  48. M. Velasco, D. Usero, S. Jiménez, J. Vázquez-Poletti, L. Vázquez, Modeling and simulation of the atmospheric dust dynamic: Fractional calculus and cloud computing. Int. J. Numer. Anal. Model. 15, 74–85 (2018)

    MathSciNet  MATH  Google Scholar 

  49. J. Vázquez-Poletti, I. Llorente, M. Velasco, A. Vicente-Retortillo, C. Aguirre, R. Caro-Carretero, F. Valero, L. Vázquez, Martian computing clouds: A two use case study, in The Seventh Moscow Solar System Symposium (7M-S3) (2016)

    Google Scholar 

  50. J. Vázquez-Poletti, M. Velasco, S. Jiménez, D. Usero, I. Llorente, L. Vázquez, O. Korablev, D. Belyaev, M. V. Patsaeva, I. V. Khatuntsev, Public “cloud” provisioning for Venus Express VMC image processing. Commun. Appl. Math. Comput. 1(2), 253 (2019). https://doi.org/10.1007/s42967-019-00014-z

  51. H. Kritikos, D. Jaggard, Recent Advances in Electromagnetic Theory (Springer, 1990)

    Google Scholar 

  52. M. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, K. Honda, Localization of electromagnetic waves in three dimensional fractal cavities. Phys. Rev. Lett. 92(9), 093902(4) (2004)

    Google Scholar 

  53. V. Tarasov, Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos Solitons Fractals 81, 38–42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Vázquez, H. Jaffari (eds.), Fractional Calculus: Theory and Numerical Methods, vol. 11 (2013)

    Google Scholar 

  55. V. Konotop, Z. Fei, L. Vázquez, Wave interaction with a fractal layer. Phys. Rev. E 48, 4044–4048 (1993)

    Article  Google Scholar 

  56. S. Bulgakov, V. Konotop, L. Vázquez, Wave interaction with a random fat fractal: Dimension of the reflection coefficient. Waves Random Media 5, 9–18 (1995)

    Article  MATH  Google Scholar 

  57. S. Kirihara, M. Takeda, K. Sakoda, K. Honda, Y. Miyamoto, Strong localization of microwave in photonic fractals with Menger-sponge structure. J. Eur. Ceramic Soc. 26, 1861–1864 (2006)

    Article  Google Scholar 

  58. V. Veselago, The electrodynamics of substances with simultaneously negative values of 𝜖 and μ. Sov. Phys. Usp. 10, 509 (1968)

    Google Scholar 

  59. J. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  Google Scholar 

  60. R. Marques, F. Martin, M. Sorolla, Metamaterials with Negative Parameters: Theory and Microwave Applications (Wiley, 2008)

    Google Scholar 

  61. Electromagnetic and acoustic waves in metamaterials and structures (Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences). Uspekhi Fizicheskikh Nauk 54, 1161–1192 (2011)

    Google Scholar 

  62. A. Shvartsburg, A. Maradudin, Waves in Gradient Metamaterials (World Scientific, 2013)

    Google Scholar 

  63. M. Lapine, I. Shadrivov, Y. Kivshar, Colloquium: nonlinear metamaterials. Rev. Mod. Phys. 86, 1093–1123 (2014)

    Article  Google Scholar 

  64. L. Vázquez, S. Jiménez, A. Shvartsburg, The wave equation: From eikonal to antieikonal approximation. Mod. Electron. Mater. 2, 51–53 (2016)

    Article  Google Scholar 

  65. A. Shvartsburg, V. Pecherkin, L. Vasilyak, S. Vetchinin, V. Fortov, Resonant microwave fields and negative magnetic response, induced by displacement currents in dielectric rings: theory and the first experiments. Sci. Rep. (Nature Group) 7, 2180–2188 (2017)

    Google Scholar 

  66. A. Shvartsburg, V. Pecherkin, S. Jiménez, L. Vasilyak, S. Vetchinin, V. Fortov, L. Vázquez, Sub wavelength dielectric elliptical element as an anisotropic magnetic dipole for inversions of magnetic field. J. Phys. D Appl. Phys. 51, 475001 (2018)

    Article  Google Scholar 

  67. A. Shvartsburg, S. Jiménez, N. Erokhin, L. Vázquez, Tunneling and filtering of degenerate microwave modes in a polarization-dependent waveguide containing index gradient barriers. Phys. Rev. Appl. 11(4), 044056 (2019)

    Google Scholar 

  68. A. Shvartsburg, V. Pecherkin, S. Jiménez, L. Vasilyak, L. Vázquez, S. Vetchinin, Resonant phenomena in all rectangular dielectric circuit induced by plane wave. J. Physics D 54, 075004 (2021). https://doi.org/10.1088/1361-6463/abc280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vázquez, L., Velasco, M.P., Vázquez-Poletti, J.L., Jiménez, S., Usero, D. (2023). From Radiation and Space Exploration to the Fractional Calculus. In: Volchenkov, D., Luo, A.C.J. (eds) New Perspectives on Nonlinear Dynamics and Complexity . Nonlinear Systems and Complexity, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-97328-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97328-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97327-8

  • Online ISBN: 978-3-030-97328-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics