Skip to main content

The \(\langle \)Im|Possibility\(\rangle \) of Quantum Annealing for Maximum Likelihood Estimation

  • Conference paper
  • First Online:
Credible Asset Allocation, Optimal Transport Methods, and Related Topics (TES 2022)

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 429))

Included in the following conference series:

  • 361 Accesses

Abstract

This paper provides a casual exploration of quantum ideas and quantum computing to solve maximum likelihood problems common in statistical and econometric estimations. A brief description of quantum ideas, and in particular, the quantum bit and its properties, is followed by how quantum annealing, specifically conducted by the D-Wave quantum computer, takes advantage of “quantum tunneling” to solve optimization problems that may typically be handled by simulated annealing. Although there is now established theoretical grounds in favor of quantum annealing over simulated annealing, there remain several limitations of its usefulness and useability in MLE, namely, improving its accuracy by formulating the problem more fully for quantum computers and/or reducing hardware noise which may mask the true solution. Currently, the process of embedding quantum maximum likelihood into the quantum machine reduces the scale of problems available and as of now non-artificial problems in which quantum annealing outperforms simulated annealing are hard to find.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There is a lot of work from these pioneers, but perhaps see Stapp [35], Byrne [5], Rovelli [31], for a small glimpse into their ideas.

  2. 2.

    See for example Jacquier et al. [17], Byshkin et al. [6], Crosson and Harrow [7], and others. Even apparently simple MLE problem for a 3-parameter Weibull distribution can pose serious challenges (see for example Yang et al. [40]).

  3. 3.

    The D-Wave quantum computer is a rather controversial machine within the quantum computing community, with even some questioning how “quantum” the machine really is [34]. Johnson et al. [18] compared the results of quantum annealing using the D-Wave to classical techniques and showed that the D-Wave exhibited results that could only have occurred with quantum tunneling.

  4. 4.

    Nguyen and Dong [28] provides a more technical discussion on quantum properties and probability calculus.

  5. 5.

    Scientists only recently photographed entangled particle in July 2019.

  6. 6.

    The original paper discussing the Ising model for quantum annealing is Bian et al. [2]. For more on the Ising model see Irback et al. [16], Majewski et al. [22], Stauffer [36] and McGeoch [24].

  7. 7.

    This is derived from the original quantum Hamiltonian, an operator in the Hilbert space.

  8. 8.

    We can easily extend this to negative numbers by introducing a sign qubit [4].

  9. 9.

    The original simulated annealing paper is Metropolis et al. [25].

  10. 10.

    The tunneling process cannot be directly observed nor adequately explained by classical physics and is rather explained by the Heisenberg uncertainty principle and the wave-particle duality of matter in quantum physics [32, 33].

  11. 11.

    D-Wave in 2019 announced their next generation of their quantum computing topology, Pegasus, a significant improvement to the Chimera technology.

References

  1. Baaquie, B. E. (2004). Quantum finance: Path integrals and Hamiltonians for options and interest rates. Cambridge University Press.

    Google Scholar 

  2. Bian, Z., Chudak, F. A., Macready, W. G., & Rose, G. (2010). The Ising model: Teaching an old problem new tricks—D-wave systems (Technical report).

    Google Scholar 

  3. Biswas, R., Jiang, Z., Kechezhi, K., Knysh, S., Mandrà, S., O’Gorman, B., Perdomo-Ortiz, A., Petukhov, A., Realpe-Gmez, J., Rieffel, E., Venturelli, D., Vasko, F., & Wang, Z. (2017). A NASA perspective on quantum computing. Parallel Computing, 64(C), 81–98.

    Google Scholar 

  4. Borle, A., & Lomonaco, J. (2019, February 27–March 2). Analyzing the quantum annealing approach for solving linear least squares problems. In 13th International Conference, WALCOM, Proceedings, Guwahati, India.

    Google Scholar 

  5. Byrne, P. (2013). The many worlds of Hugh Everett III: Multiple universes, mutual assured destruction, and the meltdown of a nuclear family. Oxford University Press.

    Google Scholar 

  6. Byshkin, M., Stivala, A., Mira, A., Robins, G., & Lomi, A. (2018). Fast maximum likelihood estimation via equilibrium expectation for large network data. Scientific Reports, 8(1), 1–11.

    Article  Google Scholar 

  7. Crosson, E., & Harrow, A. (2016). Simulated quantum annealing can be exponentially faster than classical simulated annealing. In Proceedings of FOCS 2016 (pp. 714–723).

    Google Scholar 

  8. Denchev, V. S., Bloixo, S., Isakov, S. V., Ding, N., Babush, R., Smelyanskiy, V., Martinis, J., & Neven, J. (2016). What is the computational value of finite range tunneling? Physical Review X, 6(3). Available at arXiv:1512.02206v4

  9. DiVincenzo, D. P. (2000). The physical implementation of quantum computation. Protein Science, 48, 771–783.

    MATH  Google Scholar 

  10. Eglese, R. W. (1990). Simulated annealing: A tool for operational research. European Journal of Operational Research, 46, 271–281.

    Article  MathSciNet  Google Scholar 

  11. Farhi, E., Goldstone, J., Gutmann, J., & Sipser, M. (2000). Quantum computation by adiabatic evolution. Available at arXiv:quant-ph/0001106v1

  12. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., & Preda, D. (2001). A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292, 472–476.

    Google Scholar 

  13. Farhi, E., Goldstone, J., Gutmann, S., & Sipser, M. (2002). Quantum adiabatic evolution algorithms versus simulated annealing. Available at arXiv:quant-ph/0201031v1

  14. Foster, R. C., Weaver, B., & Gattiker, J. (2019). Applications of quantum annealing in statistics. Available at https://arxiv.org/pdf/1904.06819.pdf

  15. Ide, N., Asayama, T., Ueno, H., & Ohzeki, M. (2020). Maximum-likelihood channel decoding with quantum annealing machine. Available at https://arxiv.org/abs/2007.08689

  16. Irback, A., Peterson, C., & Potthast, F. (1996). Evidence for nonrandom hydrophobicity structures in protein chains. Proceedings of the National Academy of Sciences of the United States of America, 93, 533–538.

    Google Scholar 

  17. Jacquier, E., Johannes, M., & Polson, N. (2007). MCMC maximum likelihood for latent state models. Journal of Econometrics, 137(2), 615–640.

    Article  MathSciNet  Google Scholar 

  18. Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, N., Berkley, A. J., Johansson, J., Bunyk, P., Chapple, E. M., Enderud, C., Hilton, J. P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., ... Rose, G. (2011). Quantum annealing with manufactured spins. Nature, 473, 194–198.

    Google Scholar 

  19. Kadowaki, T., & Nishimori, H. (1998). Quantum annealing in the transverse Ising model. Physical Review E, 58(5), 5355.

    Article  Google Scholar 

  20. Kaye, P., Laflamme, R., & Mosca, M. (2007). An introduction to quantum computing. Oxford University Press.

    Google Scholar 

  21. Kreinovich, V., Nguyen, H., & Sriboonchitta, S. (2018). Quantum ideas in economics beyond quantum econometrics. In L. H. Anh, L. S. Dong, V. Kreinovich, & N. N. Thach (Eds.), Econometrics for financial applications. Studies in Computational Intelligence (Vol. 760, pp. 146–151).

    Google Scholar 

  22. Majewski, J., Li, H., & Ott, J. (2001). The Ising model in physics and statistical genetics. The American Journal of Human Genetics, 69, 853–862.

    Article  Google Scholar 

  23. Mandrà, S., Katzgraber, H. G., & Thomas, C. (2017). The pitfalls of planar spin-glass benchmarks: Raising the bar for quantum annealers (again). Quantum Science and Technology, 2(3), 38501.

    Google Scholar 

  24. McGeoch, C. C. (2014). Adiabatic quantum computation and quantum annealing. In Synthesis lectures on quantum computing. Morgan & Claypool Publisher.

    Google Scholar 

  25. Metropolis, N., Rosenbluth, A. E., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087–1092.

    Article  Google Scholar 

  26. Nikolaev, A. G., & Jacobson, S. H. (2010). Simulated annealing, Chap. 1. In M. Gendreau & J.-Y. Potvin (Eds.), Handbook of metaheuristics, 1. International Series in Operations Research & Management Science (Vol. 146, pp. 1–39). Springer.

    Google Scholar 

  27. Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge University Press.

    Google Scholar 

  28. Nguyen, H., & Dong, L. S. (2018). An invitation to quantum econometrics. In L. H. Anh, L. S. Dong, V. Kreinovich, & N. N. Thach (Eds.), Econometrics for financial applications. Studies in Computational Intelligence (Vol. 760, pp. 44–62).

    Google Scholar 

  29. O’Malley, D., & Vesselinov, V. V. (2016). A high-level programming language for D-Wave machines based on Julia. In 2016 IEEE High Performance Extreme Computing Conference (HPEC) (pp. 1–7).

    Google Scholar 

  30. Ronnow, T. F., Wang, Z., Job, J., Boixo, S., Isakov, S. V., Wecker, D., Martinis, J. M., Lidar, D. A., & Troyer, D. A. (2014). Quantum computing. Defining and detecting quantum speedup. Science, 345(6195), 420–424.

    Google Scholar 

  31. Rovelli, C. (2018). The order of time. Riverhead Books.

    Google Scholar 

  32. Sakurai, J. J., & Napolitano, J. (2010). Modern quantum mechanics, 2nd ed. Addison-Wesley.

    Google Scholar 

  33. Shankar, R. (1994). Principles of quantum mechanics, 2nd ed. Plenum Press.

    Google Scholar 

  34. Shin, S. W., Smith, G., Smolin, J. A., & Vazirani, U. (2014). How “quantum” is the D-wave machine? Available at arXiv:1401.7087 [quant-ph]

  35. Stapp, H. P. (1996). The hard problem: A quantum approach. Journal of Consciousness Studies, 3(3), 194–210.

    Google Scholar 

  36. Stauffer, D. (2008). Social applications of two-dimensional Ising models. American Journal of Physics, 76, 470–473.

    Article  Google Scholar 

  37. Wang, Y. (2011). Quantum Monte Carlo simulation. Annals of Applied Statistics, 5, 669–683.

    MathSciNet  MATH  Google Scholar 

  38. Wang, Y. (2012). Quantum computation and quantum information. Statistical Science, 27, 373–394.

    Article  MathSciNet  Google Scholar 

  39. Wang, Y., Wu, S., & Zou, J. (2016). Quantum annealing with Markov chain Monte Carlo simulations and D-wave quantum computers. Statistical Science, 31(3), 362–398.

    Article  MathSciNet  Google Scholar 

  40. Yang, F., Ren, H., & Hu, Z. (2019). Maximum likelihood estimation for three-parameter Weibull distribution using evolutionary strategy. Mathematical Problems in Engineering, 2019(2019), 1–8.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoon, Y. (2022). The \(\langle \)Im|Possibility\(\rangle \) of Quantum Annealing for Maximum Likelihood Estimation. In: Sriboonchitta, S., Kreinovich, V., Yamaka, W. (eds) Credible Asset Allocation, Optimal Transport Methods, and Related Topics. TES 2022. Studies in Systems, Decision and Control, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-97273-8_31

Download citation

Publish with us

Policies and ethics