Skip to main content

Pathogenesis of Endometriosis: Role of Platelets in Endometriosis

  • Chapter
  • First Online:
Endometriosis and Adenomyosis
  • 915 Accesses

Abstract

Endometriosis is often likened to cancer, since endometriotic lesions also exhibit proliferation, apoptosis resistance, invasion, inflammation, angiogenesis, epigenetic aberration, and even cancer-driver mutations. Unlike cancer, however, endometriotic lesions simply do not grow unbridled. In fact, one defining hallmark of endometriotic lesions that sets it apart from cancer cells is cyclic bleeding as in eutopic endometrium. Yet bleeding is a quintessential hallmark of vascular injury and thus tissue injury. Once there is a tissue injury, the evolutionarily conserved tissue repair program would kick in in all organisms. Consequently, endometriotic lesions resemble wounds. Following each bleeding episode, endometriotic lesions go through four, somewhat overlapping, phases of tissue repair: hemostasis, inflammation, proliferation, and remodeling. Among these four phases, platelets are the first responder that participates in tissue repair. It turns out that this repeated tissue injury and repair would elicit several molecular events crucial for lesional progression, eventually leading to lesional fibrosis. Platelets actively participate into these events, promoting the lesional progression and fibrogenesis. In this chapter, the role of platelets in the progression of endometriosis is reviewed, along with therapeutic implication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Portelli M, et al. Endometrial seedlings. A survival instinct? Immunomodulation and its role in the pathophysiology of endometriosis. Minerva Ginecol. 2011;63(6):563–70.

    CAS  PubMed  Google Scholar 

  2. Harada T, et al. Apoptosis and endometriosis. Front Biosci. 2007;12:3140–51.

    Article  CAS  PubMed  Google Scholar 

  3. Vinatier D, Dufour P, Oosterlynck D. Immunological aspects of endometriosis. Hum Reprod Update. 1996;2(5):371–84.

    Article  CAS  PubMed  Google Scholar 

  4. Guo SW. Nuclear factor-kappab (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Investig. 2007;63(2):71–97.

    Article  CAS  Google Scholar 

  5. McLaren J. Vascular endothelial growth factor and endometriotic angiogenesis. Hum Reprod Update. 2000;6(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  6. Guo SW. Epigenetics of endometriosis. Mol Hum Reprod. 2009;15(10):587–607.

    Article  CAS  PubMed  Google Scholar 

  7. Anglesio MS, et al. Cancer-associated mutations in endometriosis without cancer. N Engl J Med. 2017;376(19):1835–48.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suda K, et al. Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep. 2018;24(7):1777–89.

    Article  CAS  PubMed  Google Scholar 

  9. Brosens IA. Endometriosis–a disease because it is characterized by bleeding. Am J Obstet Gynecol. 1997;176(2):263–7.

    Article  CAS  PubMed  Google Scholar 

  10. Shaw TJ, Martin P. Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol. 2016;42:29–37.

    Article  CAS  PubMed  Google Scholar 

  11. van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol. 2019;16(3):166–79.

    Article  PubMed  Google Scholar 

  12. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ntelis K, et al. Platelets in systemic sclerosis: the missing link connecting vasculopathy, autoimmunity, and fibrosis? Curr Rheumatol Rep. 2019;21(5):15.

    Article  PubMed  Google Scholar 

  14. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115(12):3378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bulun SE, et al. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57(3):359–83.

    Article  CAS  PubMed  Google Scholar 

  16. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–9.

    Article  CAS  PubMed  Google Scholar 

  17. Akoum A, et al. Secretion of interleukin-6 by human endometriotic cells and regulation by proinflammatory cytokines and sex steroids. Hum Reprod. 1996;11(10):2269–75.

    Article  CAS  PubMed  Google Scholar 

  18. Wu MY, Ho HN. The role of cytokines in endometriosis. Am J Reprod Immunol. 2003;49(5):285–96.

    Article  PubMed  Google Scholar 

  19. Gonzalez-Ramos R, et al. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. Mol Hum Reprod. 2007;13(7):503–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Ramos R, et al. Involvement of the nuclear factor-kappaB pathway in the pathogenesis of endometriosis. Fertil Steril. 2010;94(6):1985–94.

    Article  CAS  PubMed  Google Scholar 

  21. Nomiyama M, et al. Local immune response in infertile patients with minimal endometriosis. Gynecol Obstet Investig. 1997;44(1):32–7.

    Article  CAS  Google Scholar 

  22. Khan KN, et al. Differential macrophage infiltration in early and advanced endometriosis and adjacent peritoneum. Fertil Steril. 2004;81(3):652–61.

    Article  PubMed  Google Scholar 

  23. Bacci M, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petaja J. Inflammation and coagulation. An overview. Thromb Res. 2011;127(Suppl 2):S34–7.

    Article  PubMed  Google Scholar 

  25. Lipinski S, et al. Coagulation and inflammation. Molecular insights and diagnostic implications. Hamostaseologie. 2011;31(2):94–102, 104.

    Article  CAS  PubMed  Google Scholar 

  26. Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74.

    Article  CAS  PubMed  Google Scholar 

  27. Vieira-de-Abreu A, et al. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5–30.

    Article  CAS  PubMed  Google Scholar 

  28. Sreeramkumar V, et al. Neutrophils scan for activated platelets to initiate inflammation. Science. 2014;346(6214):1234–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding D, et al. Platelets are an unindicted culprit in the development of endometriosis: clinical and experimental evidence. Hum Reprod. 2015;30(4):812–32.

    Article  CAS  PubMed  Google Scholar 

  30. Guo SW, Du Y, Liu X. Endometriosis-derived stromal cells secrete thrombin and thromboxane A2, inducing platelet activation. Reprod Sci. 2016;23(8):1044–52.

    Article  CAS  PubMed  Google Scholar 

  31. Dmowski WP, Steele RW, Baker GF. Deficient cellular immunity in endometriosis. Am J Obstet Gynecol. 1981;141(4):377–83.

    Article  CAS  PubMed  Google Scholar 

  32. Dmowski WP, Gebel HM, Rawlins RG. Immunologic aspects of endometriosis. Obstet Gynecol Clin N Am. 1989;16(1):93–103.

    Article  CAS  Google Scholar 

  33. Oosterlynck DJ, et al. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium. Fertil Steril. 1991;56(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  34. Oosterlynck DJ, et al. The natural killer activity of peritoneal fluid lymphocytes is decreased in women with endometriosis. Fertil Steril. 1992;58(2):290–5.

    Article  CAS  PubMed  Google Scholar 

  35. Garzetti GG, et al. Natural killer cell activity in endometriosis: correlation between serum estradiol levels and cytotoxicity. Obstet Gynecol. 1993;81(5 Pt 1):665–8.

    CAS  PubMed  Google Scholar 

  36. Tanaka E, et al. Decreased natural killer cell activity in women with endometriosis. Gynecol Obstet Investig. 1992;34(1):27–30.

    Article  CAS  Google Scholar 

  37. Osuga Y, et al. Lymphocytes in endometriosis. Am J Reprod Immunol. 2011;65(1):1–10.

    Article  PubMed  Google Scholar 

  38. Sikora J, Mielczarek-Palacz A, Kondera-Anasz Z. Role of natural killer cell activity in the pathogenesis of endometriosis. Curr Med Chem. 2011;18(2):200–8.

    Article  CAS  PubMed  Google Scholar 

  39. Wu MY, et al. Increase in the expression of killer cell inhibitory receptors on peritoneal natural killer cells in women with endometriosis. Fertil Steril. 2000;74(6):1187–91.

    Article  CAS  PubMed  Google Scholar 

  40. Maeda N, et al. Aberrant expression of intercellular adhesion molecule-1 and killer inhibitory receptors induces immune tolerance in women with pelvic endometriosis. Fertil Steril. 2002;77(4):679–83.

    Article  PubMed  Google Scholar 

  41. Matsuoka S, et al. Expression of inhibitory-motif killer immunoglobulin-like receptor, KIR2DL1, is increased in natural killer cells from women with pelvic endometriosis. Am J Reprod Immunol. 2005;53(5):249–54.

    Article  CAS  PubMed  Google Scholar 

  42. Kawashima M, et al. Human leukocyte antigen-G, a ligand for the natural killer receptor KIR2DL4, is expressed by eutopic endometrium only in the menstrual phase. Fertil Steril. 2009;91(2):343–9.

    Article  CAS  PubMed  Google Scholar 

  43. Galandrini R, et al. Increased frequency of human leukocyte antigen-E inhibitory receptor CD94/NKG2A-expressing peritoneal natural killer cells in patients with endometriosis. Fertil Steril. 2008;89(5 Suppl):1490–6.

    Article  CAS  PubMed  Google Scholar 

  44. Funamizu A, et al. Expression of natural cytotoxicity receptors on peritoneal fluid natural killer cell and cytokine production by peritoneal fluid natural killer cell in women with endometriosis. Am J Reprod Immunol. 2014;71(4):359–67.

    Article  CAS  PubMed  Google Scholar 

  45. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smyth MJ, et al. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer. 2002;2(11):850–61.

    Article  CAS  PubMed  Google Scholar 

  47. Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol. 2003;15(3):308–14.

    Article  CAS  PubMed  Google Scholar 

  48. Cheent K, Khakoo SI. Natural killer cells: integrating diversity with function. Immunology. 2009;126(4):449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bauer S, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285(5428):727–9.

    Article  CAS  PubMed  Google Scholar 

  50. Groh V, et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol. 2001;2(3):255–60.

    Article  CAS  PubMed  Google Scholar 

  51. Raulet DH, Guerra N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol. 2009;9(8):568–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo SW, Du Y, Liu X. Platelet-derived TGF-beta1 mediates the down-modulation of NKG2D expression and may be responsible for impaired natural killer (NK) cytotoxicity in women with endometriosis. Hum Reprod. 2016;31(7):1462–74.

    Article  CAS  PubMed  Google Scholar 

  53. Wu MY, et al. The suppression of peritoneal cellular immunity in women with endometriosis could be restored after gonadotropin releasing hormone agonist treatment. Am J Reprod Immunol. 1996;35(6):510–6.

    Article  CAS  PubMed  Google Scholar 

  54. Rook AH, et al. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol. 1986;136(10):3916–20.

    CAS  PubMed  Google Scholar 

  55. Malygin AM, Meri S, Timonen T. Regulation of natural killer cell activity by transforming growth factor-beta and prostaglandin E2. Scand J Immunol. 1993;37(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  56. Bellone G, et al. Regulation of NK cell functions by TGF-beta 1. J Immunol. 1995;155(3):1066–73.

    CAS  PubMed  Google Scholar 

  57. Du Y, Liu X, Guo SW. Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. Hum Reprod. 2017;32(4):794–810.

    Article  CAS  PubMed  Google Scholar 

  58. Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775–83.

    Article  CAS  PubMed  Google Scholar 

  59. Guo SW, et al. P-selectin as a potential therapeutic target for endometriosis. Fertil Steril. 2015;103(4):990–1000 e8.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Q, et al. Activated platelets induce estrogen receptor beta expression in endometriotic stromal cells. Gynecol Obstet Investig. 2015;80(3):187–92.

    Article  CAS  Google Scholar 

  61. Assoian RK, Sporn MB. Type beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J Cell Biol. 1986;102(4):1217–23.

    Article  CAS  PubMed  Google Scholar 

  62. Assoian RK, et al. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258(11):7155–60.

    Article  CAS  PubMed  Google Scholar 

  63. Thiery JP, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  64. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005;13(1):7–12.

    Article  PubMed  Google Scholar 

  65. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200(4):500–3.

    Article  CAS  PubMed  Google Scholar 

  66. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-beta signaling in fibrosis. Growth Factors. 2011;29(5):196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mehal WZ, Iredale J, Friedman SL. Scraping fibrosis: expressway to the core of fibrosis. Nat Med. 2011;17(5):552–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Q, et al. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation. Mol Cell Endocrinol. 2016;428:1–16.

    Article  PubMed  Google Scholar 

  70. Zhang Q, et al. Cellular changes consistent with epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation in the progression of experimental endometriosis in baboons. Reprod Sci. 2016;23(10):1409–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Q, Liu X, Guo SW. Progressive development of endometriosis and its hindrance by anti-platelet treatment in mice with induced endometriosis. Reprod Biomed Online. 2016;34(2):124–36.

    Article  PubMed  Google Scholar 

  72. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril. 1997;68(4):585–96.

    Article  CAS  PubMed  Google Scholar 

  73. Liu X, Zhang Q, Guo SW. Histological and immunohistochemical characterization of the similarity and difference between ovarian endometriomas and deep infiltrating endometriosis. Reprod Sci. 2017;25(3):329–40.

    Article  PubMed  Google Scholar 

  74. Duan J, et al. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice. Reprod Biomed Online. 2018;37(3):254–68.

    Article  CAS  PubMed  Google Scholar 

  75. Xiao F, Liu X, Guo SW. Platelets and regulatory T cells may induce a type 2 immunity that is conducive to the progression and fibrogenesis of endometriosis. Front Immunol. 2020;11:610963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu X, Yan D, Guo SW. Sensory nerve-derived neuropeptides accelerate the development and fibrogenesis of endometriosis. Hum Reprod. 2019;34(3):452–68.

    Article  CAS  PubMed  Google Scholar 

  77. Yan D, Liu X, Guo SW. Neuropeptides substance P and calcitonin gene related peptide accelerate the development and fibrogenesis of endometriosis. Sci Rep. 2019;9(1):2698.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yan D, et al. Mesothelial cells participate in endometriosis fibrogenesis through platelet-induced mesothelial-mesenchymal transition. J Clin Endocrinol Metab. 2020;105(11):e4124–47.

    Article  Google Scholar 

  79. Yan D, et al. Platelets induce endothelial-mesenchymal transition and subsequent fibrogenesis in endometriosis. Reprod Biomed Online. 2020;41(3):500–17.

    Article  CAS  PubMed  Google Scholar 

  80. Noble LS, et al. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab. 1997;82(2):600–6.

    CAS  PubMed  Google Scholar 

  81. Yang S, et al. Regulation of aromatase P450 expression in endometriotic and endometrial stromal cells by CCAAT/enhancer binding proteins (C/EBPs): decreased C/EBPbeta in endometriosis is associated with overexpression of aromatase. J Clin Endocrinol Metab. 2002;87(5):2336–45.

    CAS  PubMed  Google Scholar 

  82. Breyer RM, et al. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol. 2001;41:661–90.

    Article  CAS  PubMed  Google Scholar 

  83. Bulun SE, et al. Steroidogenic factor-1 and endometriosis. Mol Cell Endocrinol. 2009;300(1–2):104–8.

    Article  CAS  PubMed  Google Scholar 

  84. Hsu CC, et al. Cyclic adenosine 3′,5′-monophosphate response element-binding protein and CCAAT/enhancer-binding protein mediate prostaglandin E2-induced steroidogenic acute regulatory protein expression in endometriotic stromal cells. Am J Pathol. 2008;173(2):433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sun HS, et al. Transactivation of steroidogenic acute regulatory protein in human endometriotic stromal cells is mediated by the prostaglandin EP2 receptor. Endocrinology. 2003;144(9):3934–42.

    Article  CAS  PubMed  Google Scholar 

  86. Zeitoun KM, Bulun SE. Aromatase: a key molecule in the pathophysiology of endometriosis and a therapeutic target. Fertil Steril. 1999;72(6):961–9.

    Article  CAS  PubMed  Google Scholar 

  87. Horng HC, et al. Estrogen effects on wound healing. Int J Mol Sci. 2017;18(11):2325.

    Article  PubMed Central  Google Scholar 

  88. Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing and repair. Maturitas. 2017;103:60–4.

    Article  CAS  PubMed  Google Scholar 

  89. Ashcroft GS, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med. 1997;3(11):1209–15.

    Article  CAS  PubMed  Google Scholar 

  90. Ashcroft GS, et al. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J Clin Invest. 2003;111(9):1309–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hardman MJ, et al. Selective estrogen receptor modulators accelerate cutaneous wound healing in ovariectomized female mice. Endocrinology. 2008;149(2):551–7.

    Article  CAS  PubMed  Google Scholar 

  92. Pepe G, et al. Self-renewal and phenotypic conversion are the main physiological responses of macrophages to the endogenous estrogen surge. Sci Rep. 2017;7:44270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mukai K, et al. 17beta-Estradiol administration promotes delayed cutaneous wound healing in 40-week ovariectomised female mice. Int Wound J. 2016;13(5):636–44.

    Article  PubMed  Google Scholar 

  94. Hardman MJ, Ashcroft GS. Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly. Genome Biol. 2008;9(5):R80.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brandenberger AW, et al. Oestrogen receptor (ER)-alpha and ER-beta isoforms in normal endometrial and endometriosis-derived stromal cells. Mol Hum Reprod. 1999;5(7):651–5.

    Article  CAS  PubMed  Google Scholar 

  96. Fujimoto J, et al. Expression of oestrogen receptor-alpha and -beta in ovarian endometriomata. Mol Hum Reprod. 1999;5(8):742–7.

    Article  CAS  PubMed  Google Scholar 

  97. Merlo S, et al. Differential involvement of estrogen receptor alpha and estrogen receptor beta in the healing promoting effect of estrogen in human keratinocytes. J Endocrinol. 2009;200(2):189–97.

    Article  CAS  PubMed  Google Scholar 

  98. Campbell L, et al. Estrogen promotes cutaneous wound healing via estrogen receptor beta independent of its antiinflammatory activities. J Exp Med. 2010;207(9):1825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qi Q, et al. Platelets induce increased estrogen production through NF-kappaB and TGF-beta1 signaling pathways in endometriotic stromal cells. Sci Rep. 2020;10(1):1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Avcioglu SN, et al. Can platelet indices be new biomarkers for severe endometriosis? ISRN Obstet Gynecol. 2014;2014:713542.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yavuzcan A, et al. Evaluation of mean platelet volume, neutrophil/lymphocyte ratio and platelet/lymphocyte ratio in advanced stage endometriosis with endometrioma. J Turk Ger Gynecol Assoc. 2013;14(4):210–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Coskun B, et al. The feasibility of the platelet count and mean platelet volume as markers of endometriosis and adenomyosis: a case control study. J Gynecol Obstet Hum Reprod. 2019;2019:101626.

    Google Scholar 

  103. Chmaj-Wierzchowska K, et al. Novel markers in the diagnostics of endometriomas: Urocortin, ghrelin, and leptin or leukocytes, fibrinogen, and CA-125? Taiwan J Obstet Gynecol. 2015;54(2):126–30.

    Article  PubMed  Google Scholar 

  104. Wu Q, et al. Evidence for a hypercoagulable state in women with ovarian endometriomas. Reprod Sci. 2015;22(9):1107–14.

    Article  CAS  PubMed  Google Scholar 

  105. Vigano P, et al. Coagulation status in women with endometriosis. Reprod Sci. 2018;25(4):559–65.

    Article  PubMed  Google Scholar 

  106. Ding D, Liu X, Guo SW. Further evidence for hypercoagulability in women with ovarian endometriomas. Reprod Sci. 2018;25(11):1540–8.

    Article  CAS  PubMed  Google Scholar 

  107. Ding S, et al. Is there a correlation between inflammatory markers and coagulation parameters in women with advanced ovarian endometriosis? BMC Womens Health. 2019;19(1):169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ottolina J, et al. Assessment of coagulation parameters in women affected by endometriosis: validation study and systematic review of the literature. Diagnostics (Basel). 2020;10(8):567.

    Article  CAS  Google Scholar 

  109. von Kanel R. Acute mental stress and hemostasis: when physiology becomes vascular harm. Thromb Res. 2015;135(Suppl 1):S52–5.

    Article  Google Scholar 

  110. Larsson PT, et al. Altered platelet function during mental stress and adrenaline infusion in humans: evidence for an increased aggregability in vivo as measured by filtragometry. Clin Sci (Lond). 1989;76(4):369–76.

    Article  CAS  Google Scholar 

  111. Guo SW, Ding D, Liu X. Anti-platelet therapy is efficacious in treating endometriosis induced in mouse. Reprod Biomed Online. 2016;33(4):484–99.

    Article  PubMed  Google Scholar 

  112. Ding D, et al. Scutellarin suppresses platelet aggregation and stalls lesional progression in mouse with induced endometriosis. Reprod Sci. 2019;26(11):1417–28.

    Article  CAS  PubMed  Google Scholar 

  113. Zheng Y, Liu X, Guo SW. Therapeutic potential of andrographolide for treating endometriosis. Hum Reprod. 2012;27(5):1300–13.

    Article  CAS  PubMed  Google Scholar 

  114. Luo M, et al. Sodium tanshinone IIA sulfonate restrains fibrogenesis through induction of senescence in mice with induced deep endometriosis. Reprod Biomed Online. 2020;41(3):373–84.

    Article  CAS  PubMed  Google Scholar 

  115. Nurden AT, et al. Platelets and wound healing. Front Biosci. 2008;13:3532–48.

    PubMed  Google Scholar 

  116. Mu F, et al. Endometriosis and risk of coronary heart disease. Circ Cardiovasc Qual Outcomes. 2016;9(3):257–64.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This research was supported in part by grant 82071623 from the National Natural Science Foundation of China, an Excellence in Centers of Clinical Medicine grant (2017ZZ01016) from the Science and Technology Commission of Shanghai Municipality, and grant SHDC2020CR2062B from Shanghai Shenkang Center for Hospital Development.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, SW. (2022). Pathogenesis of Endometriosis: Role of Platelets in Endometriosis. In: Oral, E. (eds) Endometriosis and Adenomyosis. Springer, Cham. https://doi.org/10.1007/978-3-030-97236-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97236-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97235-6

  • Online ISBN: 978-3-030-97236-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics