Skip to main content

Blood-Retinal Barrier Development and Potential for Regeneration in Blinding Eye Disease

  • Chapter
  • First Online:
Tight Junctions

Abstract

The blood-retinal barrier (BRB) creates the defined retinal environment necessary for neuronal signaling and vision. The well-developed tight junctions in the vascular endothelium and pigmented epithelium control transport to the neural parenchyma protecting the neural tissue from potential blood-borne toxicity. Retinal endothelial cells are intimately linked to astrocytes, mural cells including pericytes, neurons, and microglia that collectively promote differentiation of endothelium to the BRB. Loss of the BRB contributes to the pathophysiology of several retinal diseases including diabetic retinopathy, central retinal vein occlusion, retinopathy of prematurity, and age-related macular degeneration. This chapter will detail the current understanding of the development of the BRB focusing on the vascular component, describe the alterations to this barrier in blinding eye diseases, and explore how loss of the barrier contributes to loss of retinal function. Finally, this chapter will address the potential for regenerative therapies targeting restoration of the BRB and vascular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Howard, J., B. Blakeslee, and S.B. Laughlin, The intracellular pupil mechanism and photoreceptor signal: noise ratios in the fly Lucilia cuprina. Proc R Soc Lond B Biol Sci, 1987. 231(1265): p. 415-35.

    Google Scholar 

  2. Niven, J.E. and S.B. Laughlin, Energy limitation as a selective pressure on the evolution of sensory systems. J Exp Biol, 2008. 211(Pt 11): p. 1792-804.

    Google Scholar 

  3. Frey, T. and D.A. Antonetti, Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxid Redox Signal, 2011. 15(5): p. 1271-84.

    Google Scholar 

  4. Silva, R.M., J.R. Faria de Abreu, and J.G. Cunha-Vaz, Blood-retina barrier in acute retinal branch vein occlusion. Graefes Arch Clin Exp Ophthalmol, 1995. 233(11): p. 721-6.

    Google Scholar 

  5. Hayreh, S.S. and M.B. Zimmerman, Fundus changes in central retinal vein occlusion. Retina, 2015. 35(1): p. 29-42.

    Google Scholar 

  6. Alon, T., et al., Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med, 1995. 1(10): p. 1024-8.

    Google Scholar 

  7. Cunha-Vaz, J., The Blood-Retinal Barrier in the Management of Retinal Disease: EURETINA Award Lecture. Ophthalmologica, 2017. 237(1): p. 1-10.

    Google Scholar 

  8. Klaassen, I., C.J. Van Noorden, and R.O. Schlingemann, Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res, 2013. 34: p. 19-48.

    Google Scholar 

  9. Toda, R., et al., Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci, 2011. 100(9): p. 3904-11.

    Google Scholar 

  10. Sagaties, M.J., et al., The structural basis of the inner blood-retina barrier in the eye of Macaca mulatta. Invest Ophthalmol Vis Sci, 1987. 28(12): p. 2000-14.

    Google Scholar 

  11. Glenney, J.R., Jr. and D. Soppet, Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A, 1992. 89(21): p. 10517-21.

    Google Scholar 

  12. Kurzchalia, T.V., et al., VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol, 1992. 118(5): p. 1003-14.

    Google Scholar 

  13. Rothberg, K.G., et al., Caveolin, a protein component of caveolae membrane coats. Cell, 1992. 68(4): p. 673-82.

    Google Scholar 

  14. Vinten, J., et al., Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta, 2005. 1717(1): p. 34-40.

    Google Scholar 

  15. Hill, M.M., et al., PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 2008. 132(1): p. 113-24.

    Google Scholar 

  16. Liu, L.B. and P.F. Pilch, A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. Journal of Biological Chemistry, 2008. 283(7): p. 4314-4322.

    Google Scholar 

  17. Patel, H.H., F. Murray, and P.A. Insel, Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol, 2008. 48: p. 359-91.

    Google Scholar 

  18. Insel, P.A. and H.H. Patel, Membrane rafts and caveolae in cardiovascular signaling. Curr Opin Nephrol Hypertens, 2009. 18(1): p. 50-6.

    Google Scholar 

  19. Schlingemann, R.O., et al., Monoclonal antibody PAL-E specific for endothelium. Lab Invest, 1985. 52(1): p. 71-6.

    Google Scholar 

  20. Niemela, H., et al., Molecular identification of PAL-E, a widely used endothelial-cell marker. Blood, 2005. 106(10): p. 3405-9.

    Google Scholar 

  21. Hallmann, R., et al., Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev Dyn, 1995. 202(4): p. 325-32.

    Google Scholar 

  22. Schlingemann, R.O., et al., Vascular expression of endothelial antigen PAL-E indicates absence of blood-ocular barriers in the normal eye. Ophthalmic Res, 1997. 29(3): p. 130-8.

    Google Scholar 

  23. Carson-Walter, E.B., et al., Plasmalemmal vesicle associated protein-1 is a novel marker implicated in brain tumor angiogenesis. Clin Cancer Res, 2005. 11(21): p. 7643-50.

    Google Scholar 

  24. Wisniewska-Kruk, J., et al., Plasmalemma Vesicle-Associated Protein Has a Key Role in Blood-Retinal Barrier Loss. Am J Pathol, 2016. 186(4): p. 1044-54.

    Google Scholar 

  25. Hofman, P., et al., Role of VEGF-A in endothelial phenotypic shift in human diabetic retinopathy and VEGF-A-induced retinopathy in monkeys. Ophthalmic Res, 2001. 33(3): p. 156-62.

    Google Scholar 

  26. Nguyen, L.N., et al., Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature, 2014. 509(7501):p. 503.

    Google Scholar 

  27. Ben-Zvi, A., et al., Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature, 2014. 509(7501): p. 507-11.

    Google Scholar 

  28. Liebner, S., et al., Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol, 2000. 79(10): p. 707-17.

    Google Scholar 

  29. Reese, T.S. and M.J. Karnovsky, Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol, 1967. 34(1): p. 207-17.

    Google Scholar 

  30. van Meer, G. and K. Simons, The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J, 1986. 5(7): p. 1455-64.

    Google Scholar 

  31. Mandel, L.J., R. Bacallao, and G. Zampighi, Uncoupling of the molecular ‘fence’ and paracellular ‘gate’ functions in epithelial tight junctions. Nature, 1993. 361(6412): p. 552-5.

    Google Scholar 

  32. Osanai, M., et al., Claudins in cancer: bench to bedside. Pflugers Arch, 2017. 469(1): p. 55-67.

    Google Scholar 

  33. Takano, K., et al., Role of tight junctions in signal transduction: an update. EXCLI J, 2014. 13: p. 1145-62.

    Google Scholar 

  34. Diaz-Coranguez, M., X. Liu, and D.A. Antonetti, Tight Junctions in Cell Proliferation. Int J Mol Sci, 2019. 20(23).

    Google Scholar 

  35. Balda, M.S. and K. Matter, Tight junctions as regulators of tissue remodelling. Curr Opin Cell Biol, 2016. 42: p. 94-101.

    Google Scholar 

  36. Bazzoni, G. and E. Dejana, Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev, 2004. 84(3): p. 869-901.

    Google Scholar 

  37. Mineta, K., et al., Predicted expansion of the claudin multigene family. FEBS Lett, 2011. 585(4): p. 606-12.

    Google Scholar 

  38. Luo, Y., et al., Differential expression of claudins in retinas during normal development and the angiogenesis of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci, 2011. 52(10): p. 7556-64.

    Google Scholar 

  39. Nitta, T., et al., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol, 2003. 161(3): p. 653-60.

    Google Scholar 

  40. Argaw, A.T., et al., VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A, 2009. 106(6): p. 1977-82.

    Google Scholar 

  41. Muthusamy, A., et al., Ischemia-reperfusion injury induces occludin phosphorylation/ubiquitination and retinal vascular permeability in a VEGFR-2-dependent manner. J Cereb Blood Flow Metab, 2014. 34(3): p. 522-31.

    Google Scholar 

  42. Furuse, M., et al., Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 1998. 141(7): p. 1539-50.

    Google Scholar 

  43. Furuse, M., et al., Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol, 2002. 156(6): p. 1099-111.

    Google Scholar 

  44. Muto, S., et al., Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A, 2010. 107(17): p. 8011-6.

    Google Scholar 

  45. Castro Dias, M., et al., Claudin-3-deficient C57BL/6J mice display intact brain barriers. Sci Rep, 2019. 9(1): p. 203.

    Google Scholar 

  46. Castro Dias, M., et al., Claudin-12 is not required for blood-brain barrier tight junction function. Fluids Barriers CNS, 2019. 16(1): p. 30.

    Google Scholar 

  47. Yu, Z., et al., Dendrobium chrysotoxum Lindl. alleviates diabetic retinopathy by preventing retinal inflammation and tight junction protein decrease. J Diabetes Res, 2015. 2015: p. 518317.

    Google Scholar 

  48. Xu, H., et al., Leukocyte diapedesis in vivo induces transient loss of tight junction protein at the blood-retina barrier. Invest Ophthalmol Vis Sci, 2005. 46(7): p. 2487-94.

    Google Scholar 

  49. Wolburg, H., et al., Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol, 2003. 105(6): p. 586-92.

    Google Scholar 

  50. Sanchez-Pulido, L., et al., MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci, 2002. 27(12): p. 599-601.

    Google Scholar 

  51. Raleigh, D.R., et al., Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell, 2010. 21(7): p. 1200-13.

    Google Scholar 

  52. Feldman, G.J., J.M. Mullin, and M.P. Ryan, Occludin: structure, function and regulation. Adv Drug Deliv Rev, 2005. 57(6): p. 883-917.

    Google Scholar 

  53. Furuse, M., et al., Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol, 1993. 123(6 Pt 2): p. 1777-88.

    Google Scholar 

  54. Traweger, A., et al., The tight junction-specific protein occludin is a functional target of the E3 ubiquitin-protein ligase itch. J Biol Chem, 2002. 277(12): p. 10201-8.

    Google Scholar 

  55. Murakami, T., E.A. Felinski, and D.A. Antonetti, Occludin Phosphorylation and Ubiquitination Regulate Tight Junction Trafficking and Vascular Endothelial Growth Factor-induced Permeability. Journal of Biological Chemistry, 2009. 284(31): p. 21036-21046.

    Google Scholar 

  56. Furuse, M., et al., Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol, 1994. 127(6 Pt 1): p. 1617-26.

    Google Scholar 

  57. Jesaitis, L.A. and D.A. Goodenough, Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol, 1994. 124(6): p. 949-61.

    Google Scholar 

  58. Haskins, J., et al., ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol, 1998. 141(1): p. 199-208.

    Google Scholar 

  59. Tash, B.R., et al., The occludin and ZO-1 complex, defined by small angle X-ray scattering and NMR, has implications for modulating tight junction permeability. Proc Natl Acad Sci U S A, 2012. 109(27): p. 10855-60.

    Google Scholar 

  60. Saitou, M., et al., Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol, 1998. 141(2): p. 397-408.

    Google Scholar 

  61. Saitou, M., et al., Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell, 2000. 11(12): p. 4131-42.

    Google Scholar 

  62. Schulzke, J.D., et al., Epithelial transport and barrier function in occludin-deficient mice. Biochim Biophys Acta, 2005. 1669(1): p. 34-42.

    Google Scholar 

  63. Yu, A.S., et al., Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol, 2005. 288(6): p. C1231-41.

    Google Scholar 

  64. Phillips, B.E., et al., Occludin independently regulates permeability under hydrostatic pressure and cell division in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci, 2008. 49(6): p. 2568-76.

    Google Scholar 

  65. Aaku-Saraste, E., A. Hellwig, and W.B. Huttner, Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure—remodeling of the neuroepithelium prior to neurogenesis. Dev Biol, 1996. 180(2): p. 664-79.

    Google Scholar 

  66. Sundstrom, J.M., et al., Identification and analysis of occludin phosphosites: a combined mass spectrometry and bioinformatics approach. J Proteome Res, 2009. 8(2): p. 808-17.

    Google Scholar 

  67. Cummins, P.M., Occludin: one protein, many forms. Mol Cell Biol, 2012. 32(2): p. 242-50.

    Google Scholar 

  68. Suzuki, T., et al., PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci U S A, 2009. 106(1): p. 61-6.

    Google Scholar 

  69. Elias, B.C., et al., Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem, 2009. 284(3): p. 1559-69.

    Google Scholar 

  70. Raleigh, D.R., et al., Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol, 2011. 193(3): p. 565-82.

    Google Scholar 

  71. Murakami, T., et al., Protein kinase cbeta phosphorylates occludin regulating tight junction trafficking in vascular endothelial growth factor-induced permeability in vivo. Diabetes, 2012. 61(6): p. 1573-83.

    Google Scholar 

  72. Goncalves, A., et al., Vascular Expression of Permeability-Resistant Occludin Mutant Preserves Visual Function in Diabetes. Diabetes, 2021. 70(7): p. 1549-1560.

    Google Scholar 

  73. Liu, X., et al., Occludin S490 Phosphorylation Regulates Vascular Endothelial Growth Factor-Induced Retinal Neovascularization. Am J Pathol, 2016. 186(9): p. 2486-99.

    Google Scholar 

  74. Runkle, E.A., et al., Occludin localizes to centrosomes and modifies mitotic entry. J Biol Chem, 2011. 286(35): p. 30847-58.

    Google Scholar 

  75. Bolinger, M.T., et al., Occludin S471 Phosphorylation Contributes to Epithelial Monolayer Maturation. Mol Cell Biol, 2016. 36(15): p. 2051-66.

    Google Scholar 

  76. Jenkinson, E.M., et al., Comprehensive molecular screening strategy of OCLN in band-like calcification with simplified gyration and polymicrogyria. Clin Genet, 2018. 93(2): p. 228-234.

    Google Scholar 

  77. Abdel-Hamid, M.S., et al., Band-like calcification with simplified gyration and polymicrogyria: report of 10 new families and identification of five novel OCLN mutations. J Hum Genet, 2017. 62(5): p. 553-559.

    Google Scholar 

  78. Aggarwal, S., A. Bahal, and A. Dalal, Renal dysfunction in sibs with band like calcification with simplified gyration and polymicrogyria: Report of a new mutation and review of literature. Eur J Med Genet, 2016. 59(1): p. 5-10.

    Google Scholar 

  79. Elsaid, M.F., et al., Whole genome sequencing identifies a novel occludin mutation in microcephaly with band-like calcification and polymicrogyria that extends the phenotypic spectrum. Am J Med Genet A, 2014. 164A(6): p. 1614-7.

    Google Scholar 

  80. O’Driscoll, M.C., et al., Recessive mutations in the gene encoding the tight junction protein occludin cause band-like calcification with simplified gyration and polymicrogyria. Am J Hum Genet, 2010. 87(3): p. 354-64.

    Google Scholar 

  81. LeBlanc, M.A., et al., A novel rearrangement of occludin causes brain calcification and renal dysfunction. Hum Genet, 2013. 132(11): p. 1223-34.

    Google Scholar 

  82. Jayaraman, D., B.I. Bae, and C.A. Walsh, The Genetics of Primary Microcephaly. Annu Rev Genomics Hum Genet, 2018. 19: p. 177-200.

    Google Scholar 

  83. Bendriem, R.M., et al., Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. Elife, 2019. 8.

    Google Scholar 

  84. Glotfelty, L.G., et al., Microtubules are required for efficient epithelial tight junction homeostasis and restoration. Am J Physiol Cell Physiol, 2014. 307(3): p. C245-54.

    Google Scholar 

  85. Yano, T., et al., The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J Cell Biol, 2013. 203(4): p. 605-14.

    Google Scholar 

  86. Moss, D.K., et al., Ninein is released from the centrosome and moves bi-directionally along microtubules. J Cell Sci, 2007. 120(Pt 17): p. 3064-74.

    Google Scholar 

  87. Shaw, R.M., et al., Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell, 2007. 128(3): p. 547-60.

    Google Scholar 

  88. Meng, W., et al., Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell, 2008. 135(5): p. 948-59.

    Google Scholar 

  89. Meng, W. and M. Takeichi, Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a002899.

    Google Scholar 

  90. Vasileva, E. and S. Citi, The role of microtubules in the regulation of epithelial junctions. Tissue Barriers, 2018. 6(3): p. 1539596.

    Google Scholar 

  91. Horgan, C.P., et al., Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to mediate transport to the endosomal-recycling compartment. J Cell Sci, 2010. 123(Pt 2): p. 181-91.

    Google Scholar 

  92. Horgan, C.P., et al., Rab11-FIP3 binds dynein light intermediate chain 2 and its overexpression fragments the Golgi complex. Biochem Biophys Res Commun, 2010. 394(2): p. 387-92.

    Google Scholar 

  93. Fesenko, I., et al., Tight junction biogenesis in the early Xenopus embryo. Mech Dev, 2000. 96(1): p. 51-65.

    Google Scholar 

  94. Morimoto, S., et al., Rab13 mediates the continuous endocytic recycling of occludin to the cell surface. J Biol Chem, 2005. 280(3): p. 2220-8.

    Google Scholar 

  95. Terai, T., et al., JRAB/MICAL-L2 is a junctional Rab13-binding protein mediating the endocytic recycling of occludin. Mol Biol Cell, 2006. 17(5): p. 2465-75.

    Google Scholar 

  96. Nishimura, N. and T. Sasaki, Cell-surface biotinylation to study endocytosis and recycling of occludin. Methods Mol Biol, 2008. 440: p. 89-96.

    Google Scholar 

  97. Lapierre, L.A., et al., VAP-33 localizes to both an intracellular vesicle population and with occludin at the tight junction. J Cell Sci, 1999. 112 (Pt 21): p. 3723-32.

    Google Scholar 

  98. Pennetta, G., et al., Drosophila VAP-33A directs bouton formation at neuromuscular junctions in a dosage-dependent manner. Neuron, 2002. 35(2): p. 291-306.

    Google Scholar 

  99. Iwamoto, N., T. Higashi, and M. Furuse, Localization of angulin-1/LSR and tricellulin at tricellular contacts of brain and retinal endothelial cells in vivo. Cell Struct Funct, 2014. 39(1): p. 1-8.

    Google Scholar 

  100. Ikenouchi, J., et al., Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol, 2005. 171(6): p. 939-45.

    Google Scholar 

  101. Riazuddin, S., et al., Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet, 2006. 79(6): p. 1040-51.

    Google Scholar 

  102. Kitajiri, S., et al., Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biol Open, 2014. 3(8): p. 759-66.

    Google Scholar 

  103. Kamitani, T., et al., Deletion of Tricellulin Causes Progressive Hearing Loss Associated with Degeneration of Cochlear Hair Cells. Sci Rep, 2015. 5: p. 18402.

    Google Scholar 

  104. Steed, E., et al., Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol, 2009. 10: p. 95.

    Google Scholar 

  105. Steed, E., et al., MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. J Cell Biol, 2014. 204(5): p. 821-38.

    Google Scholar 

  106. Martin-Padura, I., et al., Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol, 1998. 142(1): p. 117-27.

    Google Scholar 

  107. Williams, L.A., et al., Identification and characterisation of human Junctional Adhesion Molecule (JAM). Mol Immunol, 1999. 36(17): p. 1175-88.

    Google Scholar 

  108. Aurrand-Lions, M., et al., Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood, 2001. 98(13): p. 3699-707.

    Google Scholar 

  109. Tomi, M. and K. Hosoya, Application of magnetically isolated rat retinal vascular endothelial cells for the determination of transporter gene expression levels at the inner blood-retinal barrier. J Neurochem, 2004. 91(5): p. 1244-8.

    Google Scholar 

  110. Williams, D.W., et al., JAM-A and ALCAM are therapeutic targets to inhibit diapedesis across the BBB of CD14+CD16+ monocytes in HIV-infected individuals. J Leukoc Biol, 2015. 97(2): p. 401-12.

    Google Scholar 

  111. Woodfin, A., et al., JAM-A mediates neutrophil transmigration in a stimulus-specific manner in vivo: evidence for sequential roles for JAM-A and PECAM-1 in neutrophil transmigration. Blood, 2007. 110(6): p. 1848-56.

    Google Scholar 

  112. Daniele, L.L., et al., Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J Comp Neurol, 2007. 505(2): p. 166-76.

    Google Scholar 

  113. Economopoulou, M., et al., Endothelial-specific deficiency of Junctional Adhesion Molecule-C promotes vessel normalisation in proliferative retinopathy. Thromb Haemost, 2015. 114(6): p. 1241-9.

    Google Scholar 

  114. Stevenson, B.R., et al., Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol, 1986. 103(3): p. 755-66.

    Google Scholar 

  115. Gumbiner, B., T. Lowenkopf, and D. Apatira, Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci U S A, 1991. 88(8): p. 3460-4.

    Google Scholar 

  116. Katsuno, T., et al., Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell, 2008. 19(6): p. 2465-75.

    Google Scholar 

  117. Yeh, W.L., et al., Inhibition of hypoxia-induced increase of blood-brain barrier permeability by YC-1 through the antagonism of HIF-1alpha accumulation and VEGF expression. Mol Pharmacol, 2007. 72(2): p. 440-9.

    Google Scholar 

  118. Carmeliet, P., et al., Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell, 1999. 98(2): p. 147-57.

    Google Scholar 

  119. Stamatovic, S.M., et al., Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers, 2016. 4(1): p. e1154641.

    Google Scholar 

  120. Giannotta, M., M. Trani, and E. Dejana, VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell, 2013. 26(5): p. 441-54.

    Google Scholar 

  121. Milde, F., et al., The mouse retina in 3D: quantification of vascular growth and remodeling. Integr Biol (Camb), 2013. 5(12): p. 1426-38.

    Google Scholar 

  122. Stahl, A., et al., The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci, 2010. 51(6): p. 2813-26.

    Google Scholar 

  123. Gariano, R.F., Special features of human retinal angiogenesis. Eye (Lond), 2010. 24(3): p. 401-7.

    Google Scholar 

  124. Carmeliet, P., et al., Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996. 380(6573): p. 435-9.

    Google Scholar 

  125. Hughes, S., H. Yang, and T. Chan-Ling, Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophthalmol Vis Sci, 2000. 41(5): p. 1217-28.

    Google Scholar 

  126. Penn, J.S., et al., Vascular endothelial growth factor in eye disease. Prog Retin Eye Res, 2008. 27(4): p. 331-71.

    Google Scholar 

  127. Koch, S. and L. Claesson-Welsh, Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med, 2012. 2(7): p. a006502.

    Google Scholar 

  128. Lindblom, P., et al., Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev, 2003. 17(15): p. 1835-40.

    Google Scholar 

  129. Krueger, J., et al., Flt1 acts as a negative regulator of tip cell formation and branching morphogenesis in the zebrafish embryo. Development, 2011. 138(10): p. 2111-20.

    Google Scholar 

  130. Dumont, D.J., et al., Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science, 1998. 282(5390): p. 946-9.

    Google Scholar 

  131. Tammela, T., et al., Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008. 454(7204): p. 656-60.

    Google Scholar 

  132. Tammela, T., et al., VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol, 2011. 13(10): p. 1202-13.

    Google Scholar 

  133. Heinolainen, K., et al., VEGFR3 Modulates Vascular Permeability by Controlling VEGF/VEGFR2 Signaling. Circ Res, 2017. 120(9): p. 1414-1425.

    Google Scholar 

  134. Nilsson, I., et al., VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J, 2010. 29(8): p. 1377-88.

    Google Scholar 

  135. Zhang, L., et al., VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res, 2010. 20(12): p. 1319-31.

    Google Scholar 

  136. Kume, T., Novel insights into the differential functions of Notch ligands in vascular formation. J Angiogenes Res, 2009. 1: p. 8.

    Google Scholar 

  137. Blanco, R. and H. Gerhardt, VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med, 2013. 3(1): p. a006569.

    Google Scholar 

  138. Tung, J.J., I.W. Tattersall, and J. Kitajewski, Tips, stalks, tubes: notch-mediated cell fate determination and mechanisms of tubulogenesis during angiogenesis. Cold Spring Harb Perspect Med, 2012. 2(2): p. a006601.

    Google Scholar 

  139. Wei, Y., et al., Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proc Natl Acad Sci U S A, 2013. 110(41): p. E3910-8.

    Google Scholar 

  140. Hellstrom, M., L.K. Phng, and H. Gerhardt, VEGF and Notch signaling: the yin and yang of angiogenic sprouting. Cell Adh Migr, 2007. 1(3): p. 133-6.

    Google Scholar 

  141. Suchting, S., et al., The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3225-30.

    Google Scholar 

  142. Lobov, I.B., et al., Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3219-24.

    Google Scholar 

  143. Ishida, S., et al., Leukocytes mediate retinal vascular remodeling during development and vaso-obliteration in disease. Nat Med, 2003. 9(6): p. 781-8.

    Google Scholar 

  144. Simonavicius, N., et al., Pericytes promote selective vessel regression to regulate vascular patterning. Blood, 2012. 120(7): p. 1516-27.

    Google Scholar 

  145. Chow, B.W. and C. Gu, Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation. Neuron, 2017. 93(6): p. 1325-1333 e3.

    Google Scholar 

  146. Mazzoni, J., et al., The Wnt Inhibitor Apcdd1 Coordinates Vascular Remodeling and Barrier Maturation of Retinal Blood Vessels. Neuron, 2017. 96(5): p. 1055-1069 e6.

    Google Scholar 

  147. Gerhardt, H. and C. Betsholtz, Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res, 2003. 314(1): p. 15-23.

    Google Scholar 

  148. Gerhardt, H., H. Wolburg, and C. Redies, N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev Dyn, 2000. 218(3): p. 472-9.

    Google Scholar 

  149. Bobbie, M.W., et al., Reduced connexin 43 expression and its effect on the development of vascular lesions in retinas of diabetic mice. Invest Ophthalmol Vis Sci, 2010. 51(7): p. 3758-63.

    Google Scholar 

  150. Diaz-Flores, L., et al., Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol, 2009. 24(7): p. 909-69.

    Google Scholar 

  151. Daneman, R., et al., Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature, 2010. 468(7323): p. 562-6.

    Google Scholar 

  152. Park, D.Y., et al., Plastic roles of pericytes in the blood-retinal barrier. Nat Commun, 2017. 8: p. 15296.

    Google Scholar 

  153. Yun, J.H., et al., beta-Adrenergic receptor agonists attenuate pericyte loss in diabetic retinas through Akt activation. Faseb Journal, 2018. 32(5): p. 2324-2338.

    Google Scholar 

  154. Sato, Y., Activation of latent TGF-beta at the vascular wall--roles of endothelial cells and mural pericytes or smooth muscle cells. J Atheroscler Thromb, 1995. 2(1): p. 24-9.

    Google Scholar 

  155. Bergers, G. and S. Song, The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol, 2005. 7(4): p. 452-64.

    Google Scholar 

  156. Uemura, A., et al., Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest, 2002. 110(11): p. 1619-28.

    Google Scholar 

  157. Asahara, T., et al., Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res, 1998. 83(3): p. 233-40.

    Google Scholar 

  158. Rangasamy, S., et al., A potential role for angiopoietin 2 in the regulation of the blood-retinal barrier in diabetic retinopathy. Invest Ophthalmol Vis Sci, 2011. 52(6): p. 3784-91.

    Google Scholar 

  159. Gavard, J., Breaking the VE-cadherin bonds. FEBS Lett, 2009. 583(1): p. 1-6.

    Google Scholar 

  160. Siddiqui, M.R., et al., Angiopoietin-1 Regulates Brain Endothelial Permeability through PTPN-2 Mediated Tyrosine Dephosphorylation of Occludin. PLoS One, 2015. 10(6): p. e0130857.

    Google Scholar 

  161. Lee, S.W., et al., Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int J Mol Med, 2009. 23(2): p. 279-84.

    Google Scholar 

  162. Ye, X., et al., Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell, 2009. 139(2): p. 285-98.

    Google Scholar 

  163. Ye, X., P. Smallwood, and J. Nathans, Expression of the Norrie disease gene (Ndp) in developing and adult mouse eye, ear, and brain. Gene Expr Patterns, 2011. 11(1-2): p. 151-5.

    Google Scholar 

  164. Berger, W., et al., An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Hum Mol Genet, 1996. 5(1): p. 51-9.

    Google Scholar 

  165. Lee, H., et al., Norrin expression in endothelial cells in the developing mouse retina. Acta Histochem, 2013. 115(5): p. 447-51.

    Google Scholar 

  166. Zhou, Y., et al., Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest, 2014. 124(9): p. 3825-46.

    Google Scholar 

  167. Meitinger, T., et al., Molecular modelling of the Norrie disease protein predicts a cystine knot growth factor tertiary structure. Nat Genet, 1993. 5(4): p. 376-80.

    Google Scholar 

  168. Ke, J., et al., Structure and function of Norrin in assembly and activation of a Frizzled 4-Lrp5/6 complex. Genes Dev, 2013. 27(21): p. 2305-19.

    Google Scholar 

  169. Junge, H.J., et al., TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell, 2009. 139(2): p. 299-311.

    Google Scholar 

  170. Lai, M.B., et al., TSPAN12 Is a Norrin Co-receptor that Amplifies Frizzled4 Ligand Selectivity and Signaling. Cell Rep, 2017. 19(13): p. 2809-2822.

    Google Scholar 

  171. Wang, Y., et al., Interplay of the Norrin and Wnt7a/Wnt7b signaling systems in blood-brain barrier and blood-retina barrier development and maintenance. Proc Natl Acad Sci U S A, 2018. 115(50): p. E11827-E11836.

    Google Scholar 

  172. Nusse, R. and H. Clevers, Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 2017. 169(6): p. 985-999.

    Google Scholar 

  173. Berger, W., et al., Mutations in the candidate gene for Norrie disease. Hum Mol Genet, 1992. 1(7): p. 461-5.

    Google Scholar 

  174. Richter, M., et al., Retinal vasculature changes in Norrie disease mice. Invest Ophthalmol Vis Sci, 1998. 39(12): p. 2450-7.

    Google Scholar 

  175. Meindl, A., et al., Norrie disease is caused by mutations in an extracellular protein resembling C-terminal globular domain of mucins. Nat Genet, 1992. 2(2): p. 139-43.

    Google Scholar 

  176. Parzefall, T., et al., A novel missense NDP mutation [p.(Cys93Arg)] with a manifesting carrier in an austrian family with Norrie disease. Audiol Neurootol, 2014. 19(3): p. 203-9.

    Google Scholar 

  177. Musada, G.R., et al., Mutation spectrum of the FZD-4, TSPAN12 AND ZNF408 genes in Indian FEVR patients. BMC Ophthalmol, 2016. 16: p. 90.

    Google Scholar 

  178. Schatz, P. and A.O. Khan, Variable Familial Exudative Vitreoretinopathy in a family harbouring variants in both FZD4 and TSPAN12. Acta Ophthalmol, 2017.

    Google Scholar 

  179. Fei, P., et al., Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative vitreoretinopathy. Sci Rep, 2015. 5: p. 16120.

    Google Scholar 

  180. Zhang, L., et al., Whole Exome Sequencing Analysis Identifies Mutations in LRP5 in Indian Families with Familial Exudative Vitreoretinopathy. Genet Test Mol Biomarkers, 2016. 20(7): p. 346-51.

    Google Scholar 

  181. Yuqing, L., et al., Identification of LRP5 mutations in families with familial exudative vitreoretinopathy. Yi Chuan, 2017. 39(3): p. 241-249.

    Google Scholar 

  182. Fei, P., et al., Identification of two novel LRP5 mutations in families with familial exudative vitreoretinopathy. Mol Vis, 2014. 20: p. 395-409.

    Google Scholar 

  183. Liu, Y.Q., et al., Identification of LRP5 mutations in families with familial exudative vitreoretinopathy. Yi Chuan, 2017. 39(3): p. 241-249.

    Google Scholar 

  184. Xu, Y., et al., Novel mutations in the TSPAN12 gene in Chinese patients with familial exudative vitreoretinopathy. Mol Vis, 2014. 20: p. 1296-306.

    Google Scholar 

  185. Gal, M., et al., Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intra-familial phenotypic variability. Am J Med Genet A, 2014. 164A(12): p. 2996-3002.

    Google Scholar 

  186. Panagiotou, E.S., et al., Defects in the Cell Signaling Mediator beta-Catenin Cause the Retinal Vascular Condition FEVR. Am J Hum Genet, 2017. 100(6): p. 960-968.

    Google Scholar 

  187. Wu, J.H., et al., Haploinsufficiency of RCBTB1 is associated with Coats disease and familial exudative vitreoretinopathy. Hum Mol Genet, 2016. 25(8): p. 1637-47.

    Google Scholar 

  188. Musada, G.R., et al., Mutation spectrum of the Norrie disease pseudoglioma (NDP) gene in Indian patients with FEVR. Mol Vis, 2016. 22: p. 491-502.

    Google Scholar 

  189. Ngo, M.H., et al., Fzd4 Haploinsufficiency Delays Retinal Revascularization in the Mouse Model of Oxygen Induced Retinopathy. PLoS One, 2016. 11(8): p. e0158320.

    Google Scholar 

  190. Zhang, C., et al., Endothelial Cell-Specific Inactivation of TSPAN12 (Tetraspanin 12) Reveals Pathological Consequences of Barrier Defects in an Otherwise Intact Vasculature. Arterioscler Thromb Vasc Biol, 2018. 38(11): p. 2691-2705.

    Google Scholar 

  191. Xu, Q., et al., Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell, 2004. 116(6): p. 883-95.

    Google Scholar 

  192. Schafer, N.F., et al., Differential gene expression in Ndph-knockout mice in retinal development. Invest Ophthalmol Vis Sci, 2009. 50(2): p. 906-16.

    Google Scholar 

  193. Xia, C.H., et al., A model for familial exudative vitreoretinopathy caused by LPR5 mutations. Hum Mol Genet, 2008. 17(11): p. 1605-12.

    Google Scholar 

  194. Chen, J., et al., Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation, 2011. 124(17): p. 1871-81.

    Google Scholar 

  195. Zuercher, J., et al., Norrin stimulates cell proliferation in the superficial retinal vascular plexus and is pivotal for the recruitment of mural cells. Hum Mol Genet, 2012. 21(12): p. 2619-30.

    Google Scholar 

  196. Zhou, Y., et al., Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS One, 2015. 10(12): p. e0143650.

    Google Scholar 

  197. Liebner, S., et al., Wnt/beta-catenin signaling controls development of the blood-brain barrier. J Cell Biol, 2008. 183(3): p. 409-17.

    Google Scholar 

  198. Cho, C., P.M. Smallwood, and J. Nathans, Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron, 2017. 95(5): p. 1221-1225.

    Google Scholar 

  199. Ulrich, F., et al., Reck enables cerebrovascular development by promoting canonical Wnt signaling. Development, 2016. 143(1): p. 147-59.

    Google Scholar 

  200. Vanhollebeke, B., et al., Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis. Elife, 2015. 4.

    Google Scholar 

  201. Chang, J., et al., Gpr124 is essential for blood-brain barrier integrity in central nervous system disease. Nat Med, 2017. 23(4): p. 450-460.

    Google Scholar 

  202. Kuhnert, F., et al., Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science, 2010. 330(6006): p. 985-9.

    Google Scholar 

  203. Cullen, M., et al., GPR124, an orphan G protein-coupled receptor, is required for CNS-specific vascularization and establishment of the blood-brain barrier. Proc Natl Acad Sci U S A, 2011. 108(14): p. 5759-64.

    Google Scholar 

  204. Zhou, Y. and J. Nathans, Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signaling. Dev Cell, 2014. 31(2): p. 248-56.

    Google Scholar 

  205. Posokhova, E., et al., GPR124 functions as a WNT7-specific coactivator of canonical beta-catenin signaling. Cell Rep, 2015. 10(2): p. 123-30.

    Google Scholar 

  206. Wang, Y., et al., Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell, 2012. 151(6): p. 1332-44.

    Google Scholar 

  207. Garcia, C.M., et al., Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res, 2004. 152(1): p. 25-38.

    Google Scholar 

  208. Murphy-Ullrich, J.E. and M. Poczatek, Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev, 2000. 11(1-2): p. 59-69.

    Google Scholar 

  209. Robson, A., et al., The TGFbeta type II receptor plays a critical role in the endothelial cells during cardiac development. Dev Dyn, 2010. 239(9): p. 2435-42.

    Google Scholar 

  210. Allinson, K.R., et al., Endothelial expression of TGFbeta type II receptor is required to maintain vascular integrity during postnatal development of the central nervous system. PLoS One, 2012. 7(6): p. e39336.

    Google Scholar 

  211. Zarkada, G., et al., Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation. Dev Cell, 2021. 56(15): p. 2237-2251 e6.

    Google Scholar 

  212. Ogurtsova, K., et al., IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract, 2017. 128: p. 40-50.

    Google Scholar 

  213. Sohn, E.H., et al., Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A, 2016. 113(19): p. E2655-64.

    Google Scholar 

  214. Simo, R., A.W. Stitt, and T.W. Gardner, Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia, 2018. 61(9): p. 1902-1912.

    Google Scholar 

  215. Antonetti, D.A., P.S. Silva, and A.W. Stitt, Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol, 2021. 17(4): p. 195-206.

    Google Scholar 

  216. Diabetic Retinopathy Clinical Research, N., et al., Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology, 2007. 114(3): p. 525-36.

    Google Scholar 

  217. Gardner, T.W., et al., Diabetic macular oedema and visual loss: relationship to location, severity and duration. Acta Ophthalmol, 2009. 87(7): p. 709-13.

    Google Scholar 

  218. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol, 1985. 103(12): p. 1796-806.

    Google Scholar 

  219. Mohamed, Q., M.C. Gillies, and T.Y. Wong, Management of diabetic retinopathy: a systematic review. JAMA, 2007. 298(8): p. 902-16.

    Google Scholar 

  220. Sun, J.K., et al., Rationale and Application of the Protocol S Anti-Vascular Endothelial Growth Factor Algorithm for Proliferative Diabetic Retinopathy. Ophthalmology, 2019. 126(1): p. 87-95.

    Google Scholar 

  221. Writing Committee for the Diabetic Retinopathy Clinical Research, N., et al., Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA, 2015. 314(20): p. 2137-2146.

    Google Scholar 

  222. Wells, J.A., 3rd, A.R. Glassman, and L.M. Jampol, Targeting the Effect of VEGF in Diabetic Macular Edema. N Engl J Med, 2015. 373(5): p. 481-2.

    Google Scholar 

  223. Diabetic Retinopathy Clinical Research, N., et al., Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med, 2015. 372(13): p. 1193-203.

    Google Scholar 

  224. Nguyen, Q.D., et al., Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology, 2012. 119(4): p. 789-801.

    Google Scholar 

  225. Do, D.V., et al., One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology, 2012. 119(8): p. 1658-65.

    Google Scholar 

  226. Heier, J.S., et al., Intravitreal Aflibercept for Diabetic Macular Edema: 148-Week Results from the VISTA and VIVID Studies. Ophthalmology, 2016. 123(11): p. 2376-2385.

    Google Scholar 

  227. Ajlan, R.S., P.S. Silva, and J.K. Sun, Vascular Endothelial Growth Factor and Diabetic Retinal Disease. Semin Ophthalmol, 2016. 31(1-2): p. 40-8.

    Google Scholar 

  228. Thompson, K., et al., Advanced glycation end (AGE) product modification of laminin downregulates Kir4.1 in retinal Muller cells. PLoS One, 2018. 13(2): p. e0193280.

    Google Scholar 

  229. Aiello, L.P., et al., Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med, 1994. 331(22): p. 1480-7.

    Google Scholar 

  230. Miller, J.W., et al., Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol, 1994. 145(3): p. 574-84.

    Google Scholar 

  231. Kvanta, A., et al., Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci, 1996. 37(9): p. 1929-34.

    Google Scholar 

  232. Mesquita, J., et al., Vascular endothelial growth factors and placenta growth factor in retinal vasculopathies: Current research and future perspectives. Cytokine Growth Factor Rev, 2018. 39: p. 102-115.

    Google Scholar 

  233. Kovacs, K., et al., Angiogenic and Inflammatory Vitreous Biomarkers Associated With Increasing Levels of Retinal Ischemia. Invest Ophthalmol Vis Sci, 2015. 56(11): p. 6523-30.

    Google Scholar 

  234. Nicoletti, R., et al., Vitreous polyamines spermidine, putrescine, and spermine in human proliferative disorders of the retina. Br J Ophthalmol, 2003. 87(8): p. 1038-42.

    Google Scholar 

  235. Miller, J.W., et al., Vascular endothelial growth factor a in intraocular vascular disease. Ophthalmology, 2013. 120(1): p. 106-14.

    Google Scholar 

  236. Perrin, R.M., et al., Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor. Diabetologia, 2005. 48(11): p. 2422-2427.

    Google Scholar 

  237. Strickland, L.A., et al., Plasmalemmal vesicle-associated protein (PLVAP) is expressed by tumour endothelium and is upregulated by vascular endothelial growth factor-A (VEGF). J Pathol, 2005. 206(4): p. 466-75.

    Google Scholar 

  238. Klaassen, I., et al., Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res, 2009. 89(1): p. 4-15.

    Google Scholar 

  239. Mallmann, F. and L.H. Canani, Intravitreal neurodegenerative and inflammatory mediators in proliferative diabetic retinopathy. Arq Bras Oftalmol, 2019. 82(4): p. 275-282.

    Google Scholar 

  240. Andrae, J., R. Gallini, and C. Betsholtz, Role of platelet-derived growth factors in physiology and medicine. Genes Dev, 2008. 22(10): p. 1276-312.

    Google Scholar 

  241. Geraldes, P., et al., Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med, 2009. 15(11): p. 1298-306.

    Google Scholar 

  242. Geraldes, P. and G.L. King, Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res, 2010. 106(8): p. 1319-31.

    Google Scholar 

  243. Enge, M., et al., Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. Embo J, 2002. 21(16): p. 4307-16.

    Google Scholar 

  244. Patel, J.I., et al., Angiopoietin concentrations in diabetic retinopathy. Br J Ophthalmol, 2005. 89(4): p. 480-3.

    Google Scholar 

  245. Pfister, F., et al., Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia. Acta Diabetol, 2010. 47(1): p. 59-64.

    Google Scholar 

  246. Cohen, T., et al., Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem, 1996. 271(2): p. 736-41.

    Google Scholar 

  247. Maruo, N., et al., IL-6 increases endothelial permeability in vitro. Endocrinology, 1992. 131(2): p. 710-4.

    Google Scholar 

  248. Yoshida, A., et al., Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci, 1998. 39(7): p. 1097-106.

    Google Scholar 

  249. Hernandez, C., et al., Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med, 2005. 22(6): p. 719-22.

    Google Scholar 

  250. Koch, A.E., et al., Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 1992. 258(5089): p. 1798-801.

    Google Scholar 

  251. Vincent, J.A. and S. Mohr, Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes, 2007. 56(1): p. 224-30.

    Google Scholar 

  252. Wakabayashi, Y., et al., Correlation of vascular endothelial growth factor with chemokines in the vitreous in diabetic retinopathy. Retina, 2010. 30(2): p. 339-44.

    Google Scholar 

  253. Demircan, N., et al., Determination of vitreous interleukin-1 (IL-1) and tumour necrosis factor (TNF) levels in proliferative diabetic retinopathy. Eye (Lond), 2006. 20(12): p. 1366-9.

    Google Scholar 

  254. Koleva-Georgieva, D.N., N.P. Sivkova, and D. Terzieva, Serum inflammatory cytokines IL-1beta, IL-6, TNF-alpha and VEGF have influence on the development of diabetic retinopathy. Folia Med (Plovdiv), 2011. 53(2): p. 44-50.

    Google Scholar 

  255. McLeod, D.S., et al., Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol, 1995. 147(3): p. 642-53.

    Google Scholar 

  256. Adamiec-Mroczek, J. and J. Oficjalska-Mlynczak, Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes--role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol, 2008. 246(12): p. 1665-70.

    Google Scholar 

  257. Koskela, U.E., et al., High vitreous concentration of IL-6 and IL-8, but not of adhesion molecules in relation to plasma concentrations in proliferative diabetic retinopathy. Ophthalmic Res, 2013. 49(2): p. 108-14.

    Google Scholar 

  258. Shahulhameed, S., et al., A Systematic Investigation on Complement Pathway Activation in Diabetic Retinopathy. Front Immunol, 2020. 11: p. 154.

    Google Scholar 

  259. Beck, S.C., et al., Cystoid edema, neovascularization and inflammatory processes in the murine Norrin-deficient retina. Sci Rep, 2018. 8(1): p. 5970.

    Google Scholar 

  260. Halfter, W., et al., Diabetes-related changes in the protein composition and the biomechanical properties of human retinal vascular basement membranes. PLoS One, 2017. 12(12): p. e0189857.

    Google Scholar 

  261. Chen, Y., et al., Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol, 2009. 175(6): p. 2676-85.

    Google Scholar 

  262. Diaz-Coranguez, M., et al., Norrin restores blood-retinal barrier properties after vascular endothelial growth factor-induced permeability. J Biol Chem, 2020. 295(14): p. 4647-4660.

    Google Scholar 

  263. Lu, Q., et al., ANGPTL-4 correlates with vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol, 2016. 254(7): p. 1281-8.

    Google Scholar 

  264. Lu, Q., et al., ANGPTL-4 induces diabetic retinal inflammation by activating Profilin-1. Exp Eye Res, 2018. 166: p. 140-150.

    Google Scholar 

  265. Sodhi, A., et al., Angiopoietin-like 4 binds neuropilins and cooperates with VEGF to induce diabetic macular edema. J Clin Invest, 2019. 129(11): p. 4593-4608.

    Google Scholar 

  266. Xin, X., et al., Hypoxic retinal Muller cells promote vascular permeability by HIF-1-dependent up-regulation of angiopoietin-like 4. Proc Natl Acad Sci U S A, 2013. 110(36): p. E3425-34.

    Google Scholar 

  267. Babapoor-Farrokhran, S., et al., Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy. Proc Natl Acad Sci U S A, 2015. 112(23): p. E3030-9.

    Google Scholar 

  268. Sodhi, A. and S. Montaner, Angiopoietin-like 4 as an Emerging Therapeutic Target for Diabetic Eye Disease. JAMA Ophthalmol, 2015. 133(12): p. 1375-6.

    Google Scholar 

  269. Perdiguero, E.G., et al., Alteration of developmental and pathological retinal angiogenesis in angptl4-deficient mice. J Biol Chem, 2011. 286(42): p. 36841-51.

    Google Scholar 

  270. Gomez Perdiguero, E., et al., ANGPTL4-alphavbeta3 interaction counteracts hypoxia-induced vascular permeability by modulating Src signalling downstream of vascular endothelial growth factor receptor 2. J Pathol, 2016. 240(4): p. 461-471.

    Google Scholar 

  271. Bouleti, C., et al., Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur Heart J, 2013. 34(47): p. 3657-68.

    Google Scholar 

  272. Miloudi, K., et al., NOTCH1 signaling induces pathological vascular permeability in diabetic retinopathy. Proc Natl Acad Sci U S A, 2019. 116(10): p. 4538-4547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Antonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Díaz-Coránguez, M., Antonetti, D.A. (2022). Blood-Retinal Barrier Development and Potential for Regeneration in Blinding Eye Disease. In: González-Mariscal, L. (eds) Tight Junctions. Springer, Cham. https://doi.org/10.1007/978-3-030-97204-2_11

Download citation

Publish with us

Policies and ethics