Skip to main content

A Historical and Evolutionary View of Tight Junctions

  • Chapter
  • First Online:
Tight Junctions

Abstract

The essential functions of a polarized epithelium are to separate the spaces between tissues and regulate the exchange of materials between them, functioning as an interface with the external environment. Tight junctions (TJ) are the anatomical structures responsible for creating this barrier. These cell junctions are regulated and selective, and vary depending on the tissue in which they are found.

However, for many years it was considered that TJ were at the border of cells and their function was limited to blocking the passage of substances between cells, so it is understandable that they received names as “terminal bar.” It was not until the arrival of electron microscopy that it was possible to resolve that these “terminal bars” are, in fact, a complex of cell junctions.

In this chapter, we will see the history and how the concept of tight junctions evolved. We will discuss the main functions of this type of cellular contacts and the experiments that allowed to study their structure and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TJ:

Tight junctions

TER:

Transepithelial electrical resistance

TrEp:

Transporting epithelium

References

  1. Schrödinger E. What is life? United Kingdom: Cambridge University Press; 1944.

    Google Scholar 

  2. Claude P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J Membr Biol. 1978;39(2-3):219-32.

    Article  CAS  PubMed  Google Scholar 

  3. Fromter E, Diamond J. Route of passive ion permeation in epithelia. Nat New Biol. 1972;235(53):9-13.

    Article  CAS  PubMed  Google Scholar 

  4. Misfeldt DS, Hamamoto ST, Pitelka DR. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976;73(4):1212-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cereijido M, Contreras RG, Gonzalez-Mariscal L. Development and alteration of polarity. Annu Rev Physiol. 1989;51:785-95.

    Article  CAS  PubMed  Google Scholar 

  6. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375-412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bennett HS, Luft JH, Hampton JC. Morphological classifications of vertebrate blood capillaries. Am J Physiol. 1959;196(2):381-90.

    Article  CAS  PubMed  Google Scholar 

  8. Dahlgren UaK, W.A. Principes of Animal Histology. New York: Macmillan Co.; 1925.

    Google Scholar 

  9. Fawcett DW. Intercellular bridges. Exp Cell Res. 1961;Suppl 8:174-87.

    Google Scholar 

  10. Fawcett DW, Selby CC. Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol. 1958;4(1):63-72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. S. Das Epitheligewebe in handbuch der mikeroskopische anatomie des menschen. Berlin: Julius Spri; 1927.

    Google Scholar 

  12. Palay SL, Karlin LJ. An electron microscopic study of the intestinal villus. I. The fasting animal. J Biophys Biochem Cytol. 1959;5(3):363-72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loewenstein WR. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981;61(4):829-913.

    Article  CAS  PubMed  Google Scholar 

  14. Palade GE, Porter KR. Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J Exp Med. 1954;100(6):641-56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramon F, Rivera A. Gap junction channel modulation—a physiological viewpoint. Prog Biophys Mol Biol. 1986;48(3):127-53.

    Article  CAS  PubMed  Google Scholar 

  16. Robertson JD. The Occurrence of a Subunit Pattern in the Unit Membranes of Club Endings in Mauthner Cell Synapses in Goldfish Brains. J Cell Biol. 1963;19:201-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson JD, Bodenheimer TS, Stage DE. The Ultrastructure of Mauthner Cell Synapses and Nodes in Goldfish Brains. J Cell Biol. 1963;19:159-99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lindemann B, Solomon AK. Permeability of luminal surface of intestinal mucosal cells. J Gen Physiol. 1962;45:801-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paganelli CV, Solomon AK. The rate of exchange of tritiated water across the human red cell membrane. J Gen Physiol. 1957;41(2):259-77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sidel VW, Solomon AK. Entrance of water into human red cells under an osmotic pressure gradient. J Gen Physiol. 1957;41(2):243-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chalcroft JP, Bullivant S. An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol. 1970;47(1):49-60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farquhar MG, Palade GE. Glomerular permeability. II. Ferritin transfer across the glomerular capillary wall in nephrotic rats. J Exp Med. 1961;114:699-716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaye GI, Pappas GD. Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the cornea in vivo. J Cell Biol. 1962;12:457-79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaye GI, Pappas GD, Donn A, Mallett N. Studies on the cornea. II. The uptake and transport of colloidal particles by the living rabbit cornea in vitro. J Cell Biol. 1962;12:481-501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koefoed-Johnsen V, Ussing HH. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953;28(1):60-76.

    Article  CAS  PubMed  Google Scholar 

  26. Miller F. Hemoglobin absorption by the cells of the proximal convoluted tubule in mouse kidney. J Biophys Biochem Cytol. 1960;8:689-718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muir AR, Peters A. Quintuple-layered membrane junctions at terminal bars between endothelial cells. J Cell Biol. 1962;12:443-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Peachey LD, Rasmussen H. Structure of the toad’s urinary bladder as related to its physiology. J Biophys Biochem Cytol. 1961;10:529-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777-88.

    Article  CAS  PubMed  Google Scholar 

  30. Stevenson BR, Anderson JM, Bullivant S. The epithelial tight junction: structure, function and preliminary biochemical characterization. Mol Cell Biochem. 1988;83(2):129-45.

    Article  CAS  PubMed  Google Scholar 

  31. Diamond JM. The mechanism of solute transport by the gall-bladder. J Physiol. 1962;161:474-502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diamond JM. Standing-gradient model of fluid transport in epithelia. Fed Proc. 1971;30(1):6-13.

    CAS  PubMed  Google Scholar 

  33. Moreno JH. Routes of nonelectrolyte permeability in gallbladder. Effects of 2,4,6-triaminopyrimidinium (TAP). J Gen Physiol. 1975;66(1):117-28.

    Article  CAS  PubMed  Google Scholar 

  34. Moreno JH. Blockage of gallbladder tight junction cation-selective channels by 2,4,6-triaminopyrimidinium (TAP). J Gen Physiol. 1975;66(1):97-115.

    Article  CAS  PubMed  Google Scholar 

  35. Claude P, Goodenough DA. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol. 1973;58(2):390-400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balda MS, Gonzalez-Mariscal L, Contreras RG, Macias-Silva M, Torres-Marquez ME, Garcia-Sainz JA, et al. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol. 1991;122(3):193-202.

    Article  CAS  PubMed  Google Scholar 

  37. Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 1996;134(4):1031-49.

    Article  CAS  PubMed  Google Scholar 

  38. Cereijido M, Gonzalez-Mariscal L, Contreras RG. Epithelial tight junctions. Am Rev Respir Dis. 1988;138(6 Pt 2):S17-21.

    Article  CAS  PubMed  Google Scholar 

  39. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978;77(3):853-80.

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Mariscal L, Chavez de Ramirez B, Cereijido M. Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol. 1985;86(2):113-25.

    Article  CAS  PubMed  Google Scholar 

  41. Metz J, Aoki A, Merlo M, Forssmann WG. Morphological alterations and functional changes of interhepatocellular junctions induced by bile duct ligation. Cell Tissue Res. 1977;182(3):299-310.

    Article  CAS  PubMed  Google Scholar 

  42. Orci L, Amherdt M, Henquin JC, Lambert AE, Unger RH, Renold AE. Pronase effect on pancreatic beta cell secretion and morphology. Science. 1973;180(4086):647-9.

    Article  CAS  PubMed  Google Scholar 

  43. Polak-Charcon S, Shoham J, Ben-Shaul Y. Junction formation in trypsinized cells of human adenocarcinoma cell line. Exp Cell Res. 1978;116(1):1-13.

    Article  CAS  PubMed  Google Scholar 

  44. Shimono M, Clementi F. Intercellular junctions of oral epithelium. II. Ultrastructural changes in rat buccal epithelium induced by trypsin digestion. J Ultrastruct Res. 1977;59(1):101-12.

    Article  CAS  PubMed  Google Scholar 

  45. Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta. 2009;1788(4):832-41.

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez-Mariscal L, Lechuga S, Garay E. Role of tight junctions in cell proliferation and cancer. Prog Histochem Cytochem. 2007;42(1):1-57.

    Article  CAS  PubMed  Google Scholar 

  47. Robertson JD. The molecular structure and contact relationships of cell membranes. Prog Biophys Mol Biol. 1960;10:343-418.

    CAS  PubMed  Google Scholar 

  48. Peters A. Plasma membrane contacts in the central nervous system. J Anat. 1962;96:237-48.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dewey MM, Barr L. Intercellular Connection between Smooth Muscle Cells: the Nexus. Science. 1962;137(3531):670-2.

    Article  CAS  PubMed  Google Scholar 

  50. Karrer HE. The striated musculature of blood vessels. II. Cell interconnections and cell surface. J Biophys Biochem Cytol. 1960;8:135-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karrer HE. Cell interconnections in normal human cervical epithelium. J Biophys Biochem Cytol. 1960;7:181-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davis R, James DW. Electron microscopic appearance of close relationships between adult guinea pig fibroblasts in tissue culture. Nature. 1962;194:695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelino Cereijido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cereijido, M., Rendón, J.M. (2022). A Historical and Evolutionary View of Tight Junctions. In: González-Mariscal, L. (eds) Tight Junctions. Springer, Cham. https://doi.org/10.1007/978-3-030-97204-2_1

Download citation

Publish with us

Policies and ethics