Skip to main content

Electronic and Electrical Equipment Waste Disposal

  • Chapter
  • First Online:
Solid Waste Engineering and Management

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 25))

Abstract

The disposal of the Wastes of Electronic and Electric Equipment (WEEE) is an emerging stream of waste that has been increasing drastically recently. The intensifying of the quantity of WEEE is due to rapid technological advancement, thus reducing the End-of-Life (EOL) and hastening the obsolescence of Electronic and Electric Equipment (EEE). The approach of handling WEEE determines the fate of contaminant substance either recycling, disposed to landfill or being incinerated, releasing toxic and hazardous chemical to environment. Nevertheless, WEEE is also known as the urban mine where it can be the source of rare earth metal (REM) and precious metal such as gold and platinum. The most important element in managing the WEEE is the enforcement of the legislation/law with initiatives from stakeholders. The option of recycling for a particular material is summarized in this book chapter. Lastly, the hazard associated with recycling is being briefly discussed at the end of a chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

BER:

Brominated epoxy resin

BFR:

Brominated flame retardant

Cl5P:

Phosphorous pentachloride

CRT:

Cathode ray tube

DC:

Direct current

DOE:

Department of Environment

DRC:

Dioxin-related compounds

EEA:

European Environment Agency

EEE:

Electrical and electronic equipment

EoL:

End of life

EPR:

Extended producer responsibility

EU:

European Union

EWRS:

E-waste recycling site

H2O2:

Hydrogen peroxide

LCD:

Liquid crystal display

LPUR:

Law for the Promotion of Effective Utilization of Resources

LRHA:

Law for the Recycling of Specified Kinds of Home Appliances

MSW:

Municipal solid waste

OECD:

Organization of Economic Cooperation and Development

PAH:

Polycyclic aromatic hydrocarbons

PBDE:

Polybrominated diphenyl ether

PBDF:

Poly-brominated dibenzo-p-dibenzofurans

PCBP:

Polychlorinated biphenyl

PCB:

Printed circuit board

PCDDs/Fs:

Polychlorinated dibenzo-p-dioxins and dibenzo-furans

PCDF:

Polychlorinated dibenzo-p-dibenzofuran

PDP:

Plasma display panel

PRSWEEE:

Promotion of recycling of small waste electrical and electronic equipment

RoHS:

Restriction of Hazardous Substances in Electrical and Electronic Equipment

SCWO:

Supercritical water oxidation

WEEE:

Waste of electrical and electronic equipment

WWTP:

Wastewater treatment plant

References

  1. Babu, B. R., Parande, A. K., & Basha, C. A. (2007). Electrical and electronic waste: A global environmental problem. Waste Management & Research, 25(4), 307–318.

    Article  CAS  Google Scholar 

  2. Ongondo, F. O., Williams, I. D., & Keynes, S. (2011). Estimating the impact of the ‘ digital switchover’ on disposal of WEEE at household waste recycling centres in England. Waste Management, 31(4), 743–753.

    Article  CAS  Google Scholar 

  3. Mmereki, D., Li, B., Baldwin, A., & Hong, L. (2016). The generation, composition, collection, treatment and disposal system, and impact of e-waste. In E-waste in transition - From pollution to resource. InTechOpen.

    Google Scholar 

  4. Pérez-Belis, V., Bovea, M. D., & Gómez, A. (2013). Waste electric and electronic toys: Management practices and characterisation. Resources, Conservation and Recycling, 77, 1–12.

    Article  Google Scholar 

  5. Dias, P., Bernardes, A. M., & Huda, N. (2019). Ensuring best E-waste recycling practices in developed countries: An Australian example. Journal of Cleaner Production, 209, 846–854.

    Article  Google Scholar 

  6. Garlapati, V. K. (2016). E-waste in India and developed countries: Management, recycling, business and biotechnological initiatives. Renewable and Sustainable Energy Reviews, 54, 874–881.

    Article  CAS  Google Scholar 

  7. Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020). The global E-waste monitor 2020. UNU/UNITAR.

    Google Scholar 

  8. Sugimura, Y., & Murakami, S. (2016). Problems in Japan’s governance system related to end-of-life electrical and electronic equipment trade. Resources, Conservation and Recycling, 112, 93–106.

    Article  Google Scholar 

  9. Román, E. (2012). WEEE management in Europe: Learning from best practice. In Waste electrical and electronic equipment (WEEE) handbook (pp. 493–525). Woodhead Publishing.

    Chapter  Google Scholar 

  10. Marczuk, A., Misztal, W., Jóźwiakowski, K., Dach, J., & Kowalczyk-Juśko, A. (2019). The research on effectiveness of the electronic and electrical waste selective collection system in Lublin city, Poland. Archives of Environmental Protection, 45(3), 55–63.

    Google Scholar 

  11. Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060.

    Article  CAS  Google Scholar 

  12. Olafisoye, O. B., Adefioye, T., & Osibote, O. A. (2013). Heavy metals contamination of water, soil, and plants around an electronic waste dumpsite. Polish Journal of Environmental Studies, 22(5), 1431–1439.

    CAS  Google Scholar 

  13. Shittu, O. S., Williams, I. D., & Shaw, P. J. (2021). Global E-waste management: can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Management, 120, 549–563.

    Article  Google Scholar 

  14. Baxter, J., Lyng, K. A., Askham, C., & Hanssen, O. J. (2016). High-quality collection and disposal of WEEE: Environmental impacts and resultant issues. Waste Management, 57, 17–26.

    Article  Google Scholar 

  15. Rautela, R., Arya, S., Vishwakarma, S., Lee, J., Kim, K.-H., & Kumar, S. (2021). E-waste management and its effects on the environment and human health. Science of the Total Environment, 773, 145623.

    Article  CAS  Google Scholar 

  16. Jayaraman, K., Vejayon, S., Raman, S., & Mostafiz, I. (2019). The proposed e-waste management model from the conviction of individual laptop disposal practices-An empirical study in Malaysia. Journal of Cleaner Production, 208, 688–696.

    Article  Google Scholar 

  17. Singh, N., Li, J., & Zeng, X. (2016). Global responses for recycling waste CRTs in e-waste. Waste Management, 57, 187–197.

    Article  Google Scholar 

  18. Bakhiyi, B., Gravel, S., Ceballos, D., Flynn, M. A., & Zayed, J. (2018). Has the question of e-waste opened a Pandora’s box? An overview of unpredictable issues and challenges. Environment International, 110, 173–192.

    Article  Google Scholar 

  19. Baldé, C. P., Wang, F., Kuehr, R., & Huisman, J. (2015). The global e-waste monitor 2014. United Nation UNiversity, IAS-SCYCLE.

    Google Scholar 

  20. Williams, I. D. (2016). Global metal reuse, and formal and informal recycling from electronic and other high-tech wastes. In Metal sustainability: Global challenges, consequences, and prospects (pp. 23–51). John Wiley & Sons.

    Chapter  Google Scholar 

  21. Pathak, P., Srivastava, R. R., & Ojasvi. (2017). Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renewable and Sustainable Energy Reviews, 78(April), 220–232.

    Article  Google Scholar 

  22. Buekens, A., & Yang, J. (2014). Recycling of WEEE plastics: A review. Journal of Material Cycles and Waste Management, 16(3), 415–434.

    Article  CAS  Google Scholar 

  23. Goosey, M. (2012). The materials of WEEE. In Waste electrical and electronic equipment (WEEE) handbook (pp. 123–144).

    Chapter  Google Scholar 

  24. Maris, E., Botané, P., Wavrer, P., & Froelich, D. (2015). Characterizing plastics originating from WEEE: A case study in France. Minerals Engineering, 76, 28–37.

    Article  CAS  Google Scholar 

  25. Islam, A., et al. (2020). Advances in sustainable approaches to recover metals from e-waste-A review. Journal of Cleaner Production, 244, 118815.

    Article  CAS  Google Scholar 

  26. Kolias, K., Hahladakis, J. N., & Gidarakos, E. (2014). Assessment of toxic metals in waste personal computers. Waste Management, 34(8), 1480–1487.

    Article  CAS  Google Scholar 

  27. Cardamone, G. F., Ardolino, F., & Arena, U. (2021). About the environmental sustainability of the European management of WEEE plastics. Waste Management, 126, 119–132.

    Article  CAS  Google Scholar 

  28. Zhang, L., & Xu, Z. (2016). A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 127, 19–36.

    Article  CAS  Google Scholar 

  29. Adeola, F. O. (2018). WEEE generation and the consequences of its improper disposal. Elsevier.

    Book  Google Scholar 

  30. Zueva, S. B. (2018). Current legislation and methods of treatment of wastewater coming from waste electrical and electronic equipment processing. Elsevier.

    Book  Google Scholar 

  31. Vaccari, M., et al. (2019). WEEE treatment in developing countries: Environmental pollution and health consequences—An overview. International Journal of Environmental Research and Public Health, 16(9), 1595.

    Article  CAS  Google Scholar 

  32. Cesaro, A., et al. (2019). A relative risk assessment of the open burning of WEEE. Environmental Science and Pollution Research, 26(11), 11042–11052.

    Article  Google Scholar 

  33. Damrongsiri, S., Vassanadumrongdee, S., & Tanwattana, P. (2016). Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: A case study of Bangkok, Thailand. Environmental Science and Pollution Research, 23(17), 17026–17034.

    Article  CAS  Google Scholar 

  34. Someya, M., et al. (2016). Occurrence of emerging flame retardants from e-waste recycling activities in the northern part of Vietnam. Emerging Contaminants, 2(2), 58–65.

    Article  Google Scholar 

  35. Luo, C., et al. (2011). Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. Journal of Hazardous Materials, 186(1), 481–490.

    Article  CAS  Google Scholar 

  36. Tue, N. M., et al. (2016). Release of chlorinated, brominated and mixed halogenated dioxin-related compounds to soils from open burning of e-waste in Agbogbloshie (Accra, Ghana). Journal of Hazardous Materials, 302, 151–157.

    Article  CAS  Google Scholar 

  37. Cui, J. L., Luo, C. L., Tang, C. W. Y., Chan, T. S., & Li, X. D. (2017). Speciation and leaching of trace metal contaminants from e-waste contaminated soils. Journal of Hazardous Materials, 329, 150–158.

    Article  CAS  Google Scholar 

  38. Pradhan, J. K., & Kumar, S. (2014). Informal e-waste recycling: Environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environmental Science and Pollution Research, 21(13), 7913–7928.

    Article  CAS  Google Scholar 

  39. Wu, Q., et al. (2015). Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Science of the Total Environment, 506–507, 217–225.

    Article  CAS  Google Scholar 

  40. Zhang, D., et al. (2011). Source identification and health risk of polycyclic aromatic hydrocarbons associated with electronic dismantling in Guiyu town, South China. Journal of Hazardous Materials, 192(1), 1–7.

    Article  CAS  Google Scholar 

  41. Xu, L., Huo, X., Zhang, Y., Li, W., Zhang, J., & Xu, X. (2015). Polybrominated diphenyl ethers in human placenta associated with neonatal physiological development at a typical e-waste recycling area in China. Environmental Pollution, 196, 414–422.

    Article  CAS  Google Scholar 

  42. Tue, N. M., et al. (2014). Dioxin-related compounds in breast milk of women from Vietnamese e-waste recycling sites: Levels, toxic equivalents and relevance of non-dietary exposure. Ecotoxicology and Environmental Safety, 106, 220–225.

    Article  CAS  Google Scholar 

  43. Zhang, Y., et al. (2018). Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Science of the Total Environment, 628–629, 282–290.

    Article  CAS  Google Scholar 

  44. Patil, R. A., & Ramakrishna, S. (2020). A comprehensive analysis of e-waste legislation worldwide. Environmental Science and Pollution Research, 27(13), 14412–14431.

    Article  Google Scholar 

  45. Friege, H., Oberdörfer, M., & Günther, M. (2015). Optimising waste from electric and electronic equipment collection systems: A comparison of approaches in European countries. Waste Management & Research, 33(3), 223–231.

    Article  Google Scholar 

  46. Friege, H. (2012). Review of material recovery from used electric and electronic equipment-alternative options for resource conservation. Waste Management & Research, 30(9, Suppl 1), 3–16.

    Article  CAS  Google Scholar 

  47. Yunita, M. T., Zagloel, T. Y. M., Ardi, R., & Zulkarnain. (2019). Development of funding model in e-waste management systems for households products in Indonesia. IOP Conference Series: Earth and Environmental Science, 219(1), 012005.

    Google Scholar 

  48. Herat, S., & Francis, A. E. (2021). E-waste management in Asia Pacific Region: Review of issues, challenges and solutions. Nature, Environment and Pollution Technology, 20(1), 45–53.

    Article  Google Scholar 

  49. Xu, Y., Yeh, C. H., Liu, C., Ramzan, S., & Zhang, L. (2020). Evaluating and managing interactive barriers for sustainable e-waste management in China. The Journal of the Operational Research Society, 0, 1–14.

    Google Scholar 

  50. Fu, J., Zhong, J., Chen, D., & Liu, Q. (2020). Urban environmental governance, government intervention, and optimal strategies: A perspective on electronic waste management in China. Resources, Conservation and Recycling, 154, 104547.

    Article  Google Scholar 

  51. Suja, F., Rahman, R. A., Yusof, A., & Masdar, M. S. (2014). E-Waste management scenarios in Malaysia. Journal of Waste Management, 2014, 1–7.

    Article  Google Scholar 

  52. Shad, K. M., Tan, Y. L., & Karim, M. E. (2021). Sustainable e-waste management in Malaysia: Lessons from selected countries. IIUM Law Journal, 28(2), 415–447.

    Article  Google Scholar 

  53. Nowakowski, P., & Mrówczyńska, B. (2018). Towards sustainable WEEE collection and transportation methods in circular economy - Comparative study for rural and urban settlements. Resources, Conservation and Recycling, 135, 93–107.

    Article  Google Scholar 

  54. Wagner, T. P. (2013). Examining the concept of convenient collection: An application to extended producer responsibility and product stewardship frameworks. Waste Management, 33(3), 499–507.

    Article  Google Scholar 

  55. Crowe, D. M., Elser, D. A., Göpfert, B., Mertins, L., & Al, E. (2003). Waste from electrical and electronic equipment (WEEE) - Quantities, dangerous substances and treatment methods (Vol. 1, p. 37). EEA.

    Google Scholar 

  56. Larsen, K. (n.d.). Recycling of waste electronic and electrical equipment (WEEE). CTCN. Retrieved April 1, 2021, from https://www.ctc-n.org/technologies/recycling-waste-electronic-and-electrical-equipment-weee

  57. Kang, H. Y., & Schoenung, J. M. (2005). Electronic waste recycling: A review of U.S. infrastructure and technology options. Resources, Conservation and Recycling, 45(4), 368–400.

    Article  Google Scholar 

  58. Huang, Z., Xie, F., & Ma, Y. (2011). Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge. Journal of Hazardous Materials, 185(1), 155–161.

    Article  CAS  Google Scholar 

  59. Watling, H. R. (2006). The bioleaching of sulphide minerals with emphasis on copper sulphides - A review. Hydrometallurgy, 84(1–2), 81–108.

    Article  CAS  Google Scholar 

  60. Bas, A. D., Deveci, H., & Yazici, E. Y. (2014). Treatment of manufacturing scrap TV boards by nitric acid leaching. Separation and Purification Technology, 130(2), 151–159.

    Article  CAS  Google Scholar 

  61. Castro, L. A., & Martins, A. H. (2009). Recovery of tin and copper by recycling of printed circuit boards from obsolete computers. Brazilian Journal of Chemical Engineering, 26(4), 649–657.

    Article  CAS  Google Scholar 

  62. Sheng, P. P., & Etsell, T. H. (2007). Recovery of gold from computer circuit board scrap using aqua regia. Waste Management & Research, 25(4), 380–383.

    Article  CAS  Google Scholar 

  63. Montenegro, V., Sano, H., & Fujisawa, T. (2013). Recirculation of high arsenic content copper smelting dust to smelting and converting processes. Minerals Engineering, 49, 184–189.

    Article  CAS  Google Scholar 

  64. Hagelüken, C. (2005). Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. Proceedings - European Metallurgical Conference, 1, 307–323.

    Google Scholar 

  65. Ghosh, B., Ghosh, M. K., Parhi, P., Mukherjee, P. S., & Mishra, B. K. (2015). Waste printed circuit boards recycling: An extensive assessment of current status. Journal of Cleaner Production, 94, 5–19.

    Article  CAS  Google Scholar 

  66. Akcil, A., Erust, C., Gahan, C. S. E., Ozgun, M., Sahin, M., & Tuncuk, A. (2015). Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review. Waste Management, 45, 258–271.

    Article  CAS  Google Scholar 

  67. Liang, G., Mo, Y., & Zhou, Q. (2010). Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme and Microbial Technology, 47(7), 322–326.

    Article  CAS  Google Scholar 

  68. Panda, S., Akcil, A., Pradhan, N., & Deveci, H. (2015). Current scenario of chalcopyrite bioleaching: A review on the recent advances to its heap-leach technology. Bioresource Technology, 196, 694–706.

    Article  CAS  Google Scholar 

  69. Wang, J., Bai, J., Xu, J., & Liang, B. (2009). Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials, 172(2–3), 1100–1105.

    Article  CAS  Google Scholar 

  70. Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84(1), 13–28.

    Article  CAS  Google Scholar 

  71. Mata, Y. N., Torres, E., Blázquez, M. L., Ballester, A., González, F., & Muñoz, J. A. (2009). Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials, 166(2–3), 612–618.

    Article  CAS  Google Scholar 

  72. Tasdelen, C., Aktas, S., Acma, E., & Guvenilir, Y. (2009). Gold recovery from dilute gold solutions using DEAE-cellulose. Hydrometallurgy, 96(3), 253–257.

    Article  CAS  Google Scholar 

  73. Kim, E. Y., Kim, M. S., Lee, J. C., & Pandey, B. D. (2011). Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. Journal of Hazardous Materials, 198, 206–215.

    Article  CAS  Google Scholar 

  74. Fogarasi, S., Imre-Lucaci, F., Imre-Lucaci, Á., & Ilea, P. (2014). Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation. Journal of Hazardous Materials, 273, 215–221.

    Article  CAS  Google Scholar 

  75. Kim, E. Y., Kim, M. S., Lee, J. C., Jeong, J., & Pandey, B. D. (2011). Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometallurgy, 107(3–4), 124–132.

    Article  CAS  Google Scholar 

  76. Lister, T. E., Wang, P., & Anderko, A. (2014). Recovery of critical and value metals from mobile electronics enabled by electrochemical processing. Hydrometallurgy, 149(2014), 228–237.

    Article  CAS  Google Scholar 

  77. Fogarasi, S., Imre-Lucaci, F., Ilea, P., & Imre-Lucaci, Á. (2013). The environmental assessment of two new copper recovery processes from Waste Printed Circuit Boards. Journal of Cleaner Production, 54, 264–269.

    Article  CAS  Google Scholar 

  78. Xiu, F. R., Qi, Y., & Zhang, F. S. (2015). Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment. Waste Management, 41, 134–141.

    Article  CAS  Google Scholar 

  79. Li, K., & Xu, Z. (2015). Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module. Environmental Science & Technology, 49(3), 1761–1767.

    Article  CAS  Google Scholar 

  80. Xiu, F. R., & Zhang, F. S. (2010). Materials recovery from waste printed circuit boards by supercritical methanol. Journal of Hazardous Materials, 178(1–3), 628–634.

    Article  CAS  Google Scholar 

  81. Matsumoto, Y., & Oshima, Y. (2014). Au and Cu recovery from printed boards by decomposition of epoxy resin in supercritical water. Journal of Supercritical Fluids, 95, 462–467.

    Article  CAS  Google Scholar 

  82. Zhu, N. M., Wang, C. F., & Zhang, F. S. (2012). An integrated two-stage process for effective dechlorination of polychlorinated biphenyls in subcritical water in the presence of hydrogen donors. Chemical Engineering Journal, 197, 135–142.

    Article  CAS  Google Scholar 

  83. Xiu, F. R., Qi, Y., & Zhang, F. S. (2013). Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process. Waste Management, 33(5), 1251–1257.

    Article  CAS  Google Scholar 

  84. Zhan, L., & Xu, Z. (2008). Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps. Environmental Science & Technology, 42(20), 7676–7681.

    Article  CAS  Google Scholar 

  85. Zhan, L., & Xu, Z. (2009). Separating and recycling metals from mixed metallic particles of crushed electronic wastes by vacuum metallurgy. Environmental Science & Technology, 43(18), 7074–7078.

    Article  CAS  Google Scholar 

  86. Zhan, L., & Xu, Z. (2011). Separating and recovering pb from copper-rich particles of crushed waste printed circuit boards by evaporation and condensation. Environmental Science & Technology, 45(12), 5359–5365.

    Article  CAS  Google Scholar 

  87. Zhan, L., & Xu, Z. (2012). Separating criterion of Pb, Cd, Bi and Zn from metallic particles of crushed electronic wastes by vacuum evaporation. Separation Science and Technology, 47(6), 913–919.

    Article  CAS  Google Scholar 

  88. Huang, K., Guo, J., & Xu, Z. (2009). Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. Journal of Hazardous Materials, 164(2–3), 399–408.

    Article  CAS  Google Scholar 

  89. Xie, F., et al. (2009). The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation. Journal of Hazardous Materials, 170(1), 430–435.

    Article  CAS  Google Scholar 

  90. Tan, Q., & Li, J. (2015). Recycling metals from wastes: A novel application of mechanochemistry. Environmental Science & Technology, 49(10), 5849–5861.

    Article  CAS  Google Scholar 

  91. Bujak, J. W. (2015). Thermal utilization (treatment) of plastic waste. Energy, 90, 1468–1477.

    Article  CAS  Google Scholar 

  92. Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials, 158(2–3), 228–256.

    Article  CAS  Google Scholar 

  93. Hadi, P., Xu, M., Lin, C. S. K., Hui, C. W., & McKay, G. (2015). Waste printed circuit board recycling techniques and product utilization. Journal of Hazardous Materials, 283, 234–243.

    Article  CAS  Google Scholar 

  94. Beigbeder, J., Perrin, D., Mascaro, J. F., & Lopez-Cuesta, J. M. (2013). Study of the physico-chemical properties of recycled polymers from waste electrical and electronic equipment (WEEE) sorted by high resolution near infrared devices. Resources, Conservation and Recycling, 78, 105–114.

    Article  Google Scholar 

  95. Stenvall, E., Tostar, S., Boldizar, A., & Foreman, M. R. S. J. (2013). The influence of extrusion conditions on mechanical and thermal properties of virgin and recycled PP, HIPS, ABS and their ternary blends. International Polymer Processing, 28(5), 541–549.

    Article  CAS  Google Scholar 

  96. Makenji, K., & Savage, M. (2012). Mechanical methods of recycling plastics from WEEE. In Waste electrical and electronic equipment (WEEE) handbook (pp. 212–238).

    Chapter  Google Scholar 

  97. Haarman, A., Magalini, F., & Courtois, J. (2020). Study on the impacts of brominated flame retardants on the recycling of WEEE plastics in Europe. BSEF.

    Google Scholar 

  98. Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24–58.

    Article  CAS  Google Scholar 

  99. Lucas, D., et al. (2018). Methods of responsibly managing end-of-life foams and plastics containing flame retardants: Part I. Environmental Engineering Science, 35(6), 573–587.

    Article  CAS  Google Scholar 

  100. Ardolino, F., Berto, C., & Arena, U. (2017). Environmental performances of different configurations of a material recovery facility in a life cycle perspective. Waste Management, 68, 662–676.

    Article  Google Scholar 

  101. Wang, L. K., Hung, Y. T., & Shammas, N. K. (2010). Handbook of advanced industrial and hazardous wastes treatment (pp. 1213–1232). CRC Press.

    Google Scholar 

  102. Wang, L. K., Wang, M. H. S., Hung, Y. T., Shammas, N. K., & Chen, J. P. (2018). Handbook of advanced industrial and hazardous wastes management (pp. 339–364). CRC Press.

    Google Scholar 

  103. Ramli, H., Aziz, H. A., & Hung, Y. T. (2021). Practices of solid waste processing and disposal. In: L. K. Wang, M. H. S. Wang, & Y. T. Hung (Eds.), H. A. Aziz (Consulting Ed.), Solid waste engineering and management (Vol. 1, pp. 625–673). Springer Nature.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puganeshwary Palaniandy .

Editor information

Editors and Affiliations

Glossary

Biometallurgy

It refers to the biotech processes that involve the exchanges between microorganisms and metals or metal-bearing minerals.

Commingled Recycling

This means a scheme where waste is mixed in a recycling truck rather than separated into individual commodities by the depositor. These materials are later sorted out at a Materials Recovery Facility (MRF).

Conventions

An arrangement between states covering specific issues, especially one less formal than a treaty.

Device Stockpiling

Is the end-user mentality to store their old EEE.

EEE

Electrical and electronic equipment.

End of Life

Is the end of a product life cycle which impedes updates for users that indicate that the product is at the end of its utility life or obsolete product life.

Greenhouse Gases

Infrared gases that absorb and emit radiation within the earth’s wavelength range.

Hydrometallurgy

Involves the use of aqueous chemistry for the recovery of metals from ores, concentrates, and recycled or residual materials.

Informal Recycling

Is an improper recycling process with no proper safety measure for the manpower and the environment.

Landfill

A process of disposing of solid waste in a way that preserves public health and the environment. Every day the waste is compacted and covered. The waste disposal is screened down and the liquid and gas collected, and gate control and weighbridge is mounted.

Municipal Waste

Is the solid waste material commonly called “trash” or “garbage” that is generated by homeowners and businesses

Pyrometallurgy

Extraction and purification of metals by processes involving the application of heat.

Recycling

Is the process of converting waste materials into new materials and objects.

RoHS Directive

Is a directive to reduce or eliminate the content of the hazardous substance in the production of EEE.

Stakeholder

Individual or institution (public and private) interested and involved in related processes and activities associated with a modernization process, plan, project goal, or desired change.

Urban Mining

Can be defined as the “process of recovering rare metals through mechanical and chemical treatments from urban mine which is a stockpile of rare metals in the discarded WEEE of a society.”

WEEE

Waste for electric and electronic equipment or equipment that are no longer functional.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Palaniandy, P., Yusoff, M.S., Wang, L.K., Wang, MH.S. (2022). Electronic and Electrical Equipment Waste Disposal. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-96989-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96989-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96988-2

  • Online ISBN: 978-3-030-96989-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics