Skip to main content

Rubber Tire Recycling and Disposal

  • Chapter
  • First Online:
Solid Waste Engineering and Management

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 25))

  • 658 Accesses

Abstract

Waste management is an important indicator for creating sustainable and livable cities, but it remains a challenge for many countries around the world. Millions of rubber tire waste pollute the environment due to improper disposal methods, creating a global environmental crisis. The number of rubber tire waste piles continues to grow, posing greater environmental, safety, and aesthetic issues due to a lack of clear disposal options. This chapter gives a general overview of rubber tire waste recycling and disposal worldwide. A brief history of natural and synthetic rubber and global rubber production and consumption was first discussed. Next, various rubber tire recycling and disposal technologies were elaborated. This is followed by discussing the issues involved in recycling and disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDS:

Broadband dielectric spectroscopy

dBA:

Decibel

DMA:

Dynamic mechanical analysis

ELTs:

End-of-life tires

EPDM:

Ethylene-propylene-diene monomer

EPR:

Extended producer responsibility

GTR:

Ground tire rubber

HHV:

Calorific value

NR:

Natural rubber

OTR:

Off-the-road tires

SBR:

Styrene-butadiene rubber

TDF:

Tire-derived fuel

USEPA:

United Sates of Environmental Protection Agency

USTMA:

United States Tire Manufacturers Association

References

  1. World Bank. (2018). Urban development series - What a waste 2.0. Statista (statistics database).

    Google Scholar 

  2. International Rubber Study Group. (2020). Monthly rubber statistical news. Statisca (statistics database).

    Google Scholar 

  3. International Rubber Study Group. (2021). National rubber statistics. Statisca (statistics database).

    Google Scholar 

  4. Forrest, M. J. (2019). Overview of the world rubber recycling market. In Recycling and re-use of waste rubber (pp. 13–20). https://doi.org/10.1515/9783110644142-003

    Chapter  Google Scholar 

  5. Scotiabank. (2020). Ward’s; Bloomberg. Statista (statistics database).

    Google Scholar 

  6. HBR, Strategy & , PwC, IHS, TechNavio. (2019). Challenges and trends in the automotive industry. Thomson Reuters; Oxford Economics. Annual reports.

    Google Scholar 

  7. Mashiri, M. S., Vinod, J. S., Sheikh, M. N., & Tsang, H.-H. (2015). Shear strength and dilatancy behavior of sand–tyre chip mixtures. Soils and Foundations, 55, 517–528. https://doi.org/10.1016/j.sandf.2015.04.004

    Article  Google Scholar 

  8. Mohajerani, A., Burnett, L., Smith, J. V., Markovski, S., Rodwell, G., Rahman, M. T., Kurmus, H., Mirzababaei, M., Arulrajah, A., Horpibulsuk, S., & Maghool, F. (2020). Recycling waste rubber tires in construction materials and associated environmental considerations: A review. Resources, Conservation and Recycling, 155, 104679. https://doi.org/10.1016/j.resconrec.2020.104679

    Article  Google Scholar 

  9. ISRI. (2020). US geological survey. US Census Bureau; AF & PA; NAPCOR. Statista (statistics database).

    Google Scholar 

  10. Zarei, M., Taghipour, H., & Hassanzadeh, Y. (2018). Survey of quantity and management condition of end-of-life tires in Iran: A case study in Tabriz. Journal of Material Cycles and Waste Management, 20, 1099–1105. https://doi.org/10.1007/s10163-017-0674-5

    Article  Google Scholar 

  11. Connor, K., Cortesa, S., Issagaliyeva, S., Meunier, A., Bijaisoradat, O., Kongkatigumjorn, N., & Wattanavit, K. (2013). Developing a sustainable waste tire management strategy for Thailand. Worcester Polytechnic Institute.

    Google Scholar 

  12. Wang, H. Z., Xu, H., & Xuan, X. J. (2009). Review of waste tire reuse & recycling in China – Current situation, problems and countermeasures. Advances in Natural Science, 2(1), 31–39. https://doi.org/10.3968/g18

    Article  CAS  Google Scholar 

  13. Mahlangu, M. L. (2009). Waste tyre management problems in South Africa and the possible opportunities that can be created through the recycling thereof. M.A. thesis, University of South Africa, Pretoria, South Africa.

    Google Scholar 

  14. Mountjoy, E., Hasthanayake, D., & Freeman, T. (2015). Stocks & fate of end of life tyres-2013-14 study. National Environmental Protection Council.

    Google Scholar 

  15. Global Recycling. (2019). Tire recycling riding on. Global Recycling. Retrieved April 11, 2020, from https://global-recycling.info/archives/2883

  16. Tsang, H. H. (2013). Uses of scrap rubber tires. Rubber: Types, properties and uses. Nova Science.

    Google Scholar 

  17. Piotrowska, K., Kruszelnicka, W., Bałdowska-Witos, P., Kasner, R., Rudnicki, J., Tomporowski, A., Flizikowski, J., & Opielak, M. (2019). Assessment of the environmental impact of a car tire throughout its lifecycle using the LCA method. Materials, 12(24), 4177. https://doi.org/10.3390/ma12244177

    Article  CAS  Google Scholar 

  18. Bayraktar, O. Y., Citoglu, G. S., & Abo Aisha, A. E. S. (2019). The use of scrap tires in the construction sector. International Journal of Trend in Research and Development, 6(1), 253–256.

    Google Scholar 

  19. Ferronato, N., & Torretta, V. (2019). Waste mismanagement in developing countries: A review of global issues. International Journal of Environmental Research and Public Health, 16(6), 1060. https://doi.org/10.3390/ijerph16061060

    Article  CAS  Google Scholar 

  20. Dos Santos, R. G., Rocha, C. L., Felipe, F. L. S., Cezario, F. T., Correia, P. J., & Rezaei-Gomari, S. (2020). Tire waste management: An overview from chemical compounding to the pyrolysis-derived fuels. Journal of Material Cycles and Waste Management, 22(3), 628–641. https://doi.org/10.1007/s10163-020-00986-8

    Article  CAS  Google Scholar 

  21. Fazli, A., & Rodrigue, D. (2020). Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials, 13(3), 782. https://doi.org/10.3390/ma13030782

    Article  CAS  Google Scholar 

  22. Myhre, M., Saiwari, S., Dierkes, W., Noordermeer, J. (2012). Rubber recycling: Chemistry, processing, and applications. Rubber Chemistry and Technology, 85(3), 408–449.

    Google Scholar 

  23. USEPA. (2016). Wastes - Resource conservation - Common wastes & materials - Scrap tires. Author. Retrieved April 11, 2021, from https://archive.epa.gov/epawaste/conserve/materials/tires/web/html/faq.html#ques21

    Google Scholar 

  24. WBCSD. (2018). Global ELT management – A global state of knowledge on collection rates, recovery routes, and management methods. Author. Retrieved January 2021, from www.wbcsd.org

    Google Scholar 

  25. USEPA. (2021). Office of resource conservation and recovery. Tire-derived fuel. Scrap tires. Author. Retrieved March 30, 2021, from https://archive.epa.gov/epawaste/conserve/materials/tires/web/html/tdf.html

    Google Scholar 

  26. EcoTyre. (2020). EcoTyre annual report 2019 (p. 15). Author.

    Google Scholar 

  27. Brazilian Institute of Geography and Statistics. (2019). Statista (statistics database)

    Google Scholar 

  28. Mushunje, K., Otieno, M., & Ballim, Y. (2018). A review of waste tyre rubber as an alternative concrete constituent material. MATEC Web of Conferences, 199, 11003. https://doi.org/10.1051/matecconf/201819911003

    Article  Google Scholar 

  29. USEPA. (2020). Fact sheet on non-hazardous secondary materials determinations and scrap tires. Author. Retrieved from https://www.epa.gov/sites/default/files/2020-12/documents/scrap_tire_fact_sheet_dec_2020_v2.pdf

    Google Scholar 

  30. Pacheco-Torgal, F., Ding, Y., & Jalali, S. (2012). Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. Construction and Building Materials, 30, 714–724. https://doi.org/10.1016/j.conbuildmat.2011.11.047

    Article  Google Scholar 

  31. Eslami, M., Raof, F. F., & Zadeh, M. J. (2015). Feasibility study of recycled tire powder in construction blocks cement to decrease environmental pollution (a case study: Ahvaz, Iran). Ciência E Natura, 37(21), 269. https://doi.org/10.5902/2179460X20857

    Article  Google Scholar 

  32. Lo Presti, D. (2013). Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review. Construction and Building Materials, 49, 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007

    Article  Google Scholar 

  33. Bulei, C., Todor, M. P., Heput, T., & Kiss, I. (2018). Directions for material recovery of used tires and their use in the production of new products intended for the industry of civil construction and pavements. IOP Conference Series: Materials Science and Engineering, 294, 012064. https://doi.org/10.1088/1757-899X/294/1/012064

    Article  Google Scholar 

  34. Shafabakhsh, G. H., Sadeghnejad, M., & Sajed, Y. (2014). Case study of rutting performance of HMA modified with waste rubber powder. Case Studies in Construction Materials, 1, 69–76. https://doi.org/10.1016/j.cscm.2014.04.005

    Article  Google Scholar 

  35. Deng, Y. (2020). Low-cost adsorbents for urban stormwater pollution control. Frontiers of Environmental Science & Engineering, 14(5), 83. https://doi.org/10.1007/s11783-020-1262-9

    Article  CAS  Google Scholar 

  36. Banaszkiewicz, K., & Badura, M. (2019). Experimental investigation on the application of recycled tires polymer fibers as a BTEX removal material. SN Applied Sciences, 1(6), 558. https://doi.org/10.1007/s42452-019-0570-9

    Article  CAS  Google Scholar 

  37. Ayoob, A. K., & Fadhil, A. B. (2019). Biodiesel production through transesterification of a mixture of non-edible oils over lithium supported on activated carbon derived from scrap tires. Energy Conversion and Management, 201, 112149. https://doi.org/10.1016/j.enconman.2019.112149

    Article  CAS  Google Scholar 

  38. Sathiskumar, C., & Karthikeyan, S. (2019). Recycling of waste tires and its energy storage application of by-products–A review. Sustainable Materials and Technologies, 22, e00125. https://doi.org/10.1016/j.susmat.2019.e00125

    Article  CAS  Google Scholar 

  39. Liu, L., Cai, G., Zhang, J., Liu, X., & Liu, K. (2020). Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews, 126, 109831. https://doi.org/10.1016/j.rser.2020.109831

    Article  Google Scholar 

  40. Hejna, A., Korol, J., Przybysz-Romatowska, M., Zedler, Ł., Chmielnicki, B., & Formela, K. (2020). Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – A review. Waste Management, 108, 106–118. https://doi.org/10.1016/j.wasman.2020.04.032

    Article  CAS  Google Scholar 

  41. Araujo-Morera, J., Hernández Santana, M., Verdejo, R., & López-Manchado, M. A. (2019). Giving a second opportunity to tire waste: An alternative path for the development of sustainable self-healing styrene–butadiene rubber compounds overcoming the magic triangle of tires. Polymers, 11(12), 2122. https://doi.org/10.3390/polym11122122

    Article  CAS  Google Scholar 

  42. de Leon, A. C., Chen, Q., Palaganas, N. B., Palaganas, J. O., Manapat, J., & Advincula, R. C. (2016). High-performance polymer nanocomposites for additive manufacturing applications. Reactive and Functional Polymers, 103, 141–155. https://doi.org/10.1016/j.reactfunctpolym.2016.04.010

    Article  CAS  Google Scholar 

  43. Waste360. (2018). Scrap tire reuse: An environmental success story? Author. Retrieved March 18, 2021, from www.waste360.com/recycling/scrap-tire-reuse-environmental-success-story

    Google Scholar 

  44. Yazdi, M. A., Yang, J., Yihui, L., & Su, H. (2013). A review on application of waste tire in concrete. International Journal of Civil and Environmental Engineering, 9(12), 1656–1661. https://doi.org/10.5281/zenodo.1338638

    Article  Google Scholar 

  45. Gerges, N. N., Issa, C. A., & Fawaz, S. A. (2018). Rubber concrete: Mechanical and dynamical properties. Case Studies in Construction Materials, 9, e00184. https://doi.org/10.1016/j.cscm.2018.e00184

    Article  Google Scholar 

  46. Farrag, N. M. (2016). Use of waste-tire materials in architectural application in Egypt. International Journal of ChemTech Research, 9(12), 1–27.

    Google Scholar 

  47. Kumar, S., & Lee, H. P. (2019). The present and future role of acoustic metamaterials for architectural and urban noise mitigations. Acoustics, 1(3), 590–607. https://doi.org/10.3390/acoustics1030035

    Article  Google Scholar 

  48. Jedidi, M., Boulila, A., Benjeddou, O., & Soussi, C. (2014). Crumb rubber effect on acoustic properties of self-consolidating concrete. International Journal of Thermal & Environmental Engineering, 8(2), 69–76. https://doi.org/10.5383/ijtee.08.02.002

    Article  Google Scholar 

  49. Holmes, N., Browne, A., & Montague, C. (2014). Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Construction and Building Materials, 73, 195–204. https://doi.org/10.1016/j.conbuildmat.2014.09.107

    Article  Google Scholar 

  50. ISO. (2002). Determination of sound absorption coefficient and acoustic impedance with the interferometer. Part 2. Transfer function method. Author. Standard SR EN ISO 10534-2.

    Google Scholar 

  51. Jung, J. S., Kaloush, K. E., & Way, G. B. (2002). Life cycle cost analysis: Conventional versus asphalt-rubber pavements. Rubber Pavements Association.

    Google Scholar 

  52. Najim, K. B., & Hall, M. R. (2010). A review of the fresh/hardened properties and applications for plain- (PRC) and self-compacting rubberized concrete (SCRC). Construction and Building Materials, 24(11), 2043–2051. https://doi.org/10.1016/j.conbuildmat.2010.04.056

    Article  Google Scholar 

  53. Alfayez, S. A., Suleiman, A. R., & Nehdi, M. L. (2020). Recycling tire rubber in asphalt pavements: State of the art. Sustainability, 12(21), 9076. https://doi.org/10.3390/su12219076

    Article  CAS  Google Scholar 

  54. Leblanc, R. (2018). Why tire recycling is important. The Balance Small Business. Retrieved March 18, 2021, from https://www.thebalancesmb.com/the-importance-of-tire-recycling-2878127

    Google Scholar 

  55. Bridgestones Americas Inc. (2016). Bridgestone builds a eco-playground with recycled tires in special education school. Author. Retrieved from https://www.bridgestoneamericas.com/en/newsroom/press-releases/2016/bridgestone-builds-a-park-with-recycled-tires-in-special-education-school

    Google Scholar 

  56. Chiu, C.-T. (2008). Use of ground tire rubber in asphalt pavements: Field trial and evaluation in Taiwan. Resources, Conservation and Recycling, 52(3), 522–532. https://doi.org/10.1016/j.resconrec.2007.06.006

    Article  Google Scholar 

  57. Tsai, W. T., Chen, C. C., Lin, Y. Q., Hsiao, C. F., Tsai, C. H., & Hsieh, M. H. (2017). Status of waste tires’ recycling for material and energy resources in Taiwan. Journal of Material Cycles and Waste Management, 19(3), 1288–1294. https://doi.org/10.1007/s10163-016-0500-5

    Article  CAS  Google Scholar 

  58. Babiker, E., Al-Ghouti, M. A., Zouari, N., & McKay, G. (2019). Removal of boron from water using adsorbents derived from waste tire rubber. Journal of Environmental Chemical Engineering, 7(2), 102948. https://doi.org/10.1016/j.jece.2019.102948

    Article  CAS  Google Scholar 

  59. Wang, L., Qi, T., & Zhang, Y. (2006). Novel organic–inorganic hybrid mesoporous materials for boron adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 275(1–3), 73–78. https://doi.org/10.1016/j.colsurfa.2005.06.07.075

    Article  CAS  Google Scholar 

  60. Kavak, D. (2009). Removal of boron from aqueous solutions by batch adsorption on calcined alunite using experimental design. Journal of Hazardous Materials, 163(1), 308–314. https://doi.org/10.1016/j.jhazmat.2008.06.093

    Article  CAS  Google Scholar 

  61. Öztürk, N., & Kavak, D. (2005). Adsorption of boron from aqueous solutions using fly ash: Batch and column studies. Journal of Hazardous Materials, 127(1–3), 81–88. https://doi.org/10.1016/j.jhazmat.2005.06.026

    Article  CAS  Google Scholar 

  62. Morisada, S., Rin, T., Ogata, T., Kim, Y. H., & Nakano, Y. (2011). Adsorption removal of boron in aqueous solutions by amine-modified tannin gel. Water Research, 45(13), 4028–4034. https://doi.org/10.1016/j.watres.2011.05.010

    Article  CAS  Google Scholar 

  63. Kluczka, J. (2015). Boron removal from aqueous solutions using an amorphous zirconium dioxide. International Journal of Environmental Research, 9(2), 711.

    CAS  Google Scholar 

  64. Wójtowicz, M. A., Florczak, E., Kroo, E., & Serio, M. A. (2004). Activated carbon from waste tires for mercury emissions control. In Carbon 2004 Conference, Brown University, Providence, Rhode Island, July 11–16, 2004.

    Google Scholar 

  65. Mousavi, H. Z., Hosseynifar, A., Jahed, V., & Dehghani, S. A. M. (2010). Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent. Brazilian Journal of Chemical Engineering, 27(1), 79–87. https://doi.org/10.1590/s0104-66322010000100007

    Article  CAS  Google Scholar 

  66. Derakhshan, Z., Ghaneian, M. T., Mahvi, A. H., Conti, G. O., Faramarzian, M., Dehghani, M., & Ferrante, M. (2017). A new recycling technique for waste tires reuse. Environmental Research, 158, 462–469. https://doi.org/10.1016/j.envres.2017.07.003

    Article  CAS  Google Scholar 

  67. Hazarika, H., Yasuhara, K., Karmokar, A. K., & Mitarai, Y. (2008). Shaking table test on liquefaction prevention using tire chips and sand mixture. In H. Hazarika & K. Yasuhara (Eds.), Scrap tire derived geomaterials - Opportunities and challenges (pp. 215–222). Taylor & Francis Group.

    Google Scholar 

  68. Reddy, S. B., Krishna, A. M., & Reddy, K. R. (2017). Sustainable utilization of scrap tire derived geomaterials for geotechnical applications. Indian Geotechnical Journal, 48(2), 251–266. https://doi.org/10.1007/s40098-017-0273-3

    Article  Google Scholar 

  69. Cecich, V., Gonzales, L., Hoisaeter, A., Williams, J., & Reddy, K. (1996). Use of shredded tires as lightweight backfill material for retaining structures. Waste Management & Research, 14(5), 433–451. https://doi.org/10.1061/(asce)1090-0241(1999)125:2(132)

    Article  CAS  Google Scholar 

  70. Livingston, B., & Ravichandran, N. (2017). Properties of shredded roof membrane–sand mixture and its application as retaining wall backfill under static and earthquake loads. Recycling, 2(2), 8. https://doi.org/10.3390/recycling2020008

    Article  Google Scholar 

  71. Hossain, M. S., Islam, M. R., Rahman, M. S., Kader, M. A., & Haniu, H. (2017). Biofuel from co-pyrolysis of solid tire waste and rice husk. Energy Procedia, 110, 453–458. https://doi.org/10.1016/j.egypro.2017.03.168

    Article  CAS  Google Scholar 

  72. Zafar, S. (2019). How to convert scrap tires into biofuel. EcoMENA. Retrieved March 2021, from https://www.ecomena.org/convert-scrap-tires-into-biofuel/

    Google Scholar 

  73. Okoro, E. E., Iwuajoku, S., & Sanni, S. E. (2020). Performance evaluation of biodiesel produced from waste tire pyrolytic oil as a lubricant additive in oil drilling systems. Recycling, 5(4), 29. https://doi.org/10.3390/recycling5040029

    Article  Google Scholar 

  74. Ramarad, S., Khalid, M., Ratnam, C. T., Chuah, A. L., & Rashmi, W. (2015). Waste tire rubber in polymer blends: A review on the evolution, properties, and future. Progress in Materials Science, 72, 100–140. https://doi.org/10.1016/j.pmatsci.2015.02.004

    Article  CAS  Google Scholar 

  75. Tanasi, P., Santana, M. H., Carretero-González, J., Verdejo, R., & López-Manchado, M. A. (2019). Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers. Polymer, 175, 15–24. https://doi.org/10.1016/j.polymer.2019.04.059

    Article  CAS  Google Scholar 

  76. Hernández, M., Grande, A. M., Dierkes, W., Bijleveld, J., van der Zwaag, S., & García, S. J. (2016). Turning vulcanized natural rubber into a self-healing polymer: Effect of the disulfide/polysulfide ratio. ACS Sustainable Chemistry & Engineering, 4(10), 5776–5784. https://doi.org/10.1021/acssuschemeng.6b01760

    Article  CAS  Google Scholar 

  77. Xu, C., Cao, L., Lin, B., Liang, X., & Chen, Y. (2016). Design of self-healing supramolecular rubbers by introducing ionic cross-links into natural rubber via a controlled vulcanization. ACS Applied Materials & Interfaces, 8(27), 17728–17737. https://doi.org/10.1021/acsami.6b05941

    Article  CAS  Google Scholar 

  78. Hernández Santana, M., den Brabander, M., García, S., & Van der Zwaag, S. (2018). Routes to make natural rubber heal: A review. Polymer Reviews, 58(4), 585–609. https://doi.org/10.1080/15583724.2018.1454947

    Article  CAS  Google Scholar 

  79. Vo, L. T., Anastasiadis, S. H., & Giannelis, E. P. (2011). Dielectric study of poly (styrene-co-butadiene) composites with carbon black, silica, and nanoclay. Macromolecules, 44(15), 6162–6171. https://doi.org/10.1021/ma200044c

    Article  CAS  Google Scholar 

  80. Herrmann, V., Unseld, K., Fuchs, H. B., & Blümich, B. (2002). Molecular dynamics of elastomers investigated by DMTA and the NMR-MOUSE®. Colloid and Polymer Science, 280(8), 758–764. https://doi.org/10.1007/s00396-002-0688-x

    Article  CAS  Google Scholar 

  81. Nuzaimah, M., Sapuan, S. M., Nadlene, R., & Jawaid, M. (2018). Recycling of waste rubber as fillers: A review. IOP Conference Series: Materials Science and Engineering, 368, 01206. https://doi.org/10.1088/1757-899x/368/1/012016

    Article  CAS  Google Scholar 

  82. EPA. (2021). What is a municipal solid waste? Author. Retrieved March 2021, from https://www.epa.gov/landfills/municipal-solid-waste-landfills#whatis

    Google Scholar 

  83. Irevna. (2003). The recycling industry: A global view. Author. Retrieved February 2021, from http://www.irevna.com/pdf/Industry%20report.pdf

    Google Scholar 

  84. Dobrotă, D., Dobrotă, G., & Dobrescu, T. (2020). Improvement of waste tire recycling technology based on a new tire marking. Journal of Cleaner Production, 260, 121141. https://doi.org/10.1016/j.jclepro.2020.121141

    Article  Google Scholar 

  85. Evans, A., & Evans, R. (2006). The composition of a tire: Typical components (p. 5). The Waste & Resources Action Programme.

    Google Scholar 

  86. Coran, A. Y. (2013). Vulcanization. In J. E. Mark, B. Erman, & M. Roland (Eds.), The science and technology of rubber (4th ed., pp. 337–381). Academic Press.

    Chapter  Google Scholar 

  87. Scrap Tire News. (2012). Recycling made simple. Author. Retrieved December 2, 2021, from http://www.scraptirenews.com/crumb.php

    Google Scholar 

  88. Sapkota, J. (2011). Influence of clay modification on curing kinetics of natural rubber nanocomposites. https://doi.org/10.13140/RG.2.2.22850.48322/1

  89. Sienkiewicz, M., Kucinska-Lipka, J., Janik, H., & Balas, A. (2012). Progress in used tyres management in the European Union: A review. Waste Management, 32(10), 1742–1751. https://doi.org/10.1016/j.wasman.2012.05.010

    Article  CAS  Google Scholar 

  90. Barbosa, R., Nunes, A. T., & Ambrósio, J. D. (2017). Devulcanization of natural rubber in composites with distinct cross-link densities by the twin-screw extruder. Materials Research, 20, 77–83. https://doi.org/10.1590/1980-5373-mr-2016-0956

    Article  Google Scholar 

  91. Zhang, X., Zhu, X., Liang, M., & Lu, C. (2009). Improvement of the properties of ground tire rubber (GTR)-filled nitrile rubber vulcanizates through plasma surface modification of GTR powder. Journal of Applied Polymer Science, 114(2), 1118–1125. https://doi.org/10.1002/app.30626

    Article  CAS  Google Scholar 

  92. Seghar, S., Asaro, L., Rolland-Monnet, M., & Hocine, N. A. (2019). Thermo-mechanical devulcanization and recycling of rubber industry waste. Resources, Conservation and Recycling, 144, 180–186. https://doi.org/10.1016/j.resconrec.2019.01.0

    Article  Google Scholar 

  93. Aoudia, K., Azem, S., Hocine, N. A., Gratton, M., Pettarin, V., & Seghar, S. (2017). Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Management, 60, 471–481. https://doi.org/10.1016/j.wasman.2016.10.051

    Article  CAS  Google Scholar 

  94. Mangili, I., Lasagni, M., Huang, K., & Isayev, A. I. (2015). Modeling and optimization of ultrasonic devulcanization using the response surface methodology based on central composite face-centered design. Chemometrics and Intelligent Laboratory Systems, 144, 1–10. https://doi.org/10.1016/j.chemolab.2015.03.00

    Article  CAS  Google Scholar 

  95. Rombaldo, C. F. S., Lisbôa, A. C. L., Méndez, M. O. A., & Coutinho, A. R. (2008). Effect of operating conditions on scrap tire pyrolysis. Materials Research, 11(3), 359–363. https://doi.org/10.1590/s1516-14392008000300021

    Article  CAS  Google Scholar 

  96. Martínez, J. D., Puy, N., Murillo, R., García, T., Navarro, M. V., & Mastral, A. M. (2013). Waste tyre pyrolysis–A review. Renewable and Sustainable Energy Reviews, 23, 179–213. https://doi.org/10.1016/j.rser.2013.02.038

    Article  CAS  Google Scholar 

  97. Williams, P. T. (2013). Pyrolysis of waste tyres: A review. Waste Management, 33(8), 1714–1728. https://doi.org/10.1016/j.wasman.2013.05.003

    Article  CAS  Google Scholar 

  98. Reschner, K. (2008). Scrap tire recycling - A summary of prevalent disposal and recycling methods. Author.

    Google Scholar 

  99. Roy, C., Labrecque, B., & Caumia, B. (1990). Recycling of scrap tires to oil and carbon black by vacuum pyrolysis. Resources, Conservation and Recycling, 4(3), 203–213. https://doi.org/10.1016/0921-3449(90)90002-l

    Article  Google Scholar 

  100. Bockstal, L., Berchem, T., Schmetz, Q., & Richel, A. (2019). Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review. Journal of Cleaner Production, 236, 117574. https://doi.org/10.1016/j.jclepro.2019.07.049

    Article  CAS  Google Scholar 

  101. EPA. (2012). Tire fires. Author. Retrieved February 2021, from http://www.epa.gov/osw/conserve/materials/tires/fires.htm

    Google Scholar 

  102. Humphrey, D., & Blumenthal, M. (2010). The use of tire-derived aggregate in road construction applications. In Green Streets and Highways Conference. https://doi.org/10.1061/41148(389)25

    Chapter  Google Scholar 

  103. Rashad, A. M. (2016). A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious material. International Journal of Sustainable Built Environment, 5, 46–82. https://doi.org/10.1016/j.ijsbe.2015.11.003

    Article  Google Scholar 

  104. Reisman, J., & Lemieux, P. (1997). Air emissions from scrap tire combustion. US Environmental Protection Agency.

    Google Scholar 

  105. Woodford, C. (2020). Recycling. In Explain that stuff. Author. Retrieved January 2021, from https://www.explainthatstuff.com/recycling.html

    Google Scholar 

  106. Turer, A. (2012). Recycling of scrap tires. In Material recycling-Trends and perspectives (pp. 195–212). InTechOpen. https://doi.org/10.5772/32747

    Chapter  Google Scholar 

  107. Mrad, M., & El-Samra, R. (2020). Waste tire management: Lebanon case study. Journal of Waste Management and Disposal, 3(101), 2.

    Google Scholar 

  108. Aziz, S., & Ali, S. (2018). Characteristics and potential treatment technologies for different kinds of wastewaters. Zanco Journal of Pure and Applied Sciences, 30(1), 122–134. https://doi.org/10.21271/ZJPAS.30.s1.14

    Article  Google Scholar 

  109. Wangyao, K., Towprayoon, S., Chiemchaisri, C., Gheewala, S., & Nopharatana, A. (2010). Application of the IPCC waste model to solid waste disposal sites in tropical countries: Case study of Thailand. Environmental Monitoring and Assessment, 164(1–4), 249–261. https://doi.org/10.1007/s10661-009-0889-6

    Article  CAS  Google Scholar 

  110. Williard, P., & Smith, E. (2006). Waste tire recycling: Environmental benefits and commercial challenges. International Journal of Environmental Technology and Management, 6(3/4), 362–374.

    Google Scholar 

  111. National Solid Waste Management Department Ministry of Housing and Local Government. (2011). A study on scrap tires management for peninsular Malaysia. National Solid Waste Management Department Ministry O F Housing and Local Government.

    Google Scholar 

  112. Swachhcoin. (2019). Role of extended producer responsibility in effective smart waste management. Medium. Retrieved from https://medium.com/@swachhcoin/role-of-extended-producer-responsibility-in-effective-smart-waste-management-625017837d0c

    Google Scholar 

  113. Park, J., Dίaz-Posada, N., & Mejίa-Dugard, S. (2018). Challenges in implementing the extended producer responsibility in an emerging economy: The end-of-life tire management in Colombia. Journal of Cleaner Production, 189, 754–762. https://doi.org/10.1016/j.jclepro.2018.04.058

    Article  Google Scholar 

  114. Misik, L., & Radvanska, A. (2008). Absorption properties of the noise barriers made of scrap tires. In Annuals of DAAAM & Proceedings (pp. 885–887).

    Google Scholar 

  115. ME. (2020). Environment statistics year book South Korea 2019. Author.

    Google Scholar 

  116. Chang, N. B. (2008). Economic and policy instrument analyses in support of the scrap tire recycling program in Taiwan. Journal of Environmental Management, 86(3), 435–450. https://doi.org/10.1016/j.jenvman.2006.12.026

    Article  Google Scholar 

  117. Symeonides, D., Loizia, P., & Zorpas, A. A. (2019). Tire waste management system in Cyprus in the framework of circular economy strategy. Environmental Science and Pollution Research, 26(35), 35445–35460. https://doi.org/10.1007/s11356-019-05131-z

    Article  Google Scholar 

  118. Blackman, A., & Palma, A. (2002). Scrap tires in Ciudad Juárez and El Paso: ranking the risks. The Journal of Environment & Development, 11(3), 247–266. https://doi.org/10.1177/107049602237157

    Article  Google Scholar 

  119. Ayantoyinbo, B. B., & Adepoju, O. O. (2018). Analysis of solid waste management logistics and its attendant challenges in Lagos metropolis. Logistics, 2(2), 11. https://doi.org/10.3390/logistics2020011

    Article  Google Scholar 

  120. Shoou-Yuh, C., & Frank, G. (2016). A multi-criteria evaluation of the methods for recycling scrap tires. The Journal of Solid Waste Technology and Management, 42, 145–156. https://doi.org/10.5276/JSWTM.2016.145

    Article  Google Scholar 

  121. Smalley, M. (2018). Road ahead for scrap tire recycling. Recycling Today. Retrieved January 31, 2021, from www.recyclingtoday.com/article/road-ahead-for-scrap-tire-recycling/

  122. Anderson, M. E., Kirkland, K. H., Guidotti, T. L., & Rose, C. (2006). A case study of tire crumb use on playgrounds: Risk analysis and communication when major clinical knowledge gaps exist. Environmental Health Perspectives, 114(1), 1–3. https://doi.org/10.1289/ehp.7629

    Article  Google Scholar 

  123. Kirchner, D. B., Evenson, E., Dobie, R. A., Rabinowitz, P., Crawford, J., Kopke, R., & Hudson, T. W. (2012). Occupational noise-induced hearing loss: ACOEM task force on occupational hearing loss. Journal of Occupational and Environmental Medicine, 54(1), 106–108. https://doi.org/10.1097/jom.0b013e318242677d

    Article  Google Scholar 

  124. Gunny, A. A. N., Mydin, R. H., & Abdullah, S. (2018). Noise-induced hearing loss: Engineering control at industry and clinical audiology approach at hospital level. IOP Conference Series: Materials Science and Engineering, 429(1), 012034. https://doi.org/10.1088/1757-899x/429/1/012034

    Article  Google Scholar 

  125. Mmereki, D., Machola, B., & Mokokwe, K. (2019). Status of waste tires and management practice in Botswana. Journal of the Air & Waste Management Association, 69(10), 1230–1246. https://doi.org/10.1080/10962247.2017.1279696

    Article  CAS  Google Scholar 

  126. ME (South Korea). (2020). Waste tire recycling rate in South Korea 2008-2018. Statista (statistics database).

    Google Scholar 

  127. ME (South Korea). (2020). Waste tire recycling volume in South Korea 2008-2018. Statista (statistics database).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Ainee Zainol .

Editor information

Editors and Affiliations

Glossary

Calorific Value

The total energy released as heat when a substance undergoes complete combustion with oxygen under standard conditions.

Crumb Rubber

Is recycled rubber produced from automotive and truck scrap tires.

Devulcanization

A process that causes the selective breakup of the sulfur–sulfur (S–S) and carbon–sulfur (C–S) chemical bonds without breaking the backbone network and without degrading the material.

Extended Producer Responsibility (EPR)

An environmental program and principle adopted by certain countries that extends the responsibility of the manufacturer to fund the entire life cycle of their products, including the take-back, treatment, and disposal of the expired products.

Incineration

A controlled process for burning solid, liquid, and gaseous combustible wastes to gases and a residue containing non-combustible materials.

Landfilling

One of the primary technologies used to dispose of solid waste.

Leachate

A liquid produced from a combination of water percolation and biodegradation activities in a landfill.

Monofilling

A more specialized type of landfilling that disposes of only one type of waste.

Natural Rubber

Is made from the latex sap of rubber trees, especially those trees which belong to the genera Hevea and Ficus.

Open Dumping

A land disposal site at which solid wastes are disposed of in a manner that does not protect the environment, are susceptible to open burning, and are exposed to the elements, vectors, and scavengers.

Pyrolysis

The thermal decomposition of materials at elevated temperatures in an inert atmosphere. It involves a change of chemical composition and generates high energy in the form of oil, gas, and char products.

Recycling

The process of converting waste materials into new materials and objects.

Retreading Tire

The process of removing worn tread from your vehicle’s tires and replacing them with new treads.

Sanitary Landfill

A method of disposing waste on land without creating nuisance or hazard to public health or safety by utilizing the principle of engineering to confine the waste.

Scrap Tire

Tires that have served their original purpose and have been discarded.

Synthetic Rubber

Is any artificial elastomer and synthesized from petroleum by-products.

Tire-Derived-Fuel (TDF)

A fuel derived from scrap tires of all kinds. This may include whole tire or tires processed into uniform, flowable pieces that satisfy the specifications of the end-user.

Vulcanization

A chemical process in which the rubber is heated with sulfur, accelerator, and activator at 140–160 °C. The process involves the formation of cross-links between long rubber molecules so as to achieve improved elasticity, resilience, tensile strength, viscosity, hardness, and weather resistance.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zainol, N.A., Gunny, A.A.N., Aziz, H.A., Hung, YT. (2022). Rubber Tire Recycling and Disposal. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-96989-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96989-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96988-2

  • Online ISBN: 978-3-030-96989-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics