Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 190))

  • 231 Accesses

Abstract

In this chapter we consider optimization problems on complete metric spaces without compactness assumptions, optimization problems arising in crystallography and symmetric optimization problems in abstract spaces. We also discuss turnpike properties in the calculus of variations. To have the turnpike property means, roughly speaking, that the approximate solutions of the problems are determined mainly by the integrand and are essentially independent of the choice of interval and endpoint conditions, except in regions close to the endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson BDO, Moore JB (1971) Linear optimal control. Prentice-Hall, Englewood Cliffs

    Book  MATH  Google Scholar 

  2. Arkin VI, Evstigneev IV (1987) Stochastic models of control and economic dynamics. Academic Press, London

    Google Scholar 

  3. Aseev SM, Kryazhimskiy AV (2004) The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J Control Optim 43:1094–1119

    Article  MathSciNet  MATH  Google Scholar 

  4. Aseev SM, Veliov VM (2012) Maximum principle for infinite-horizon optimal control problems with dominating discount. Dyn Contin Discrete Impuls Syst Ser B 19:43–63

    MathSciNet  MATH  Google Scholar 

  5. Aseev SM, Krastanov MI, Veliov VM (2017) Optimality conditions for discrete-time optimal control on infinite horizon. Pure Appl Funct Anal 2:395–409

    MathSciNet  MATH  Google Scholar 

  6. Atsumi H (1965) Neoclassical growth and the efficient program of capital accumulation. Rev Eco Stud 32:127–136

    Article  Google Scholar 

  7. Aubry S, Le Daeron PY (1983) The discrete Frenkel-Kontorova model and its extensions I. Phys D 8:381–422

    Article  MathSciNet  MATH  Google Scholar 

  8. Bachir M, Blot J (2015) Infinite dimensional infinite-horizon Pontryagin principles for discrete-time problems. Set Valued Var Anal 23:43–54

    Article  MathSciNet  MATH  Google Scholar 

  9. Bachir M, Blot J (2017) Infinite dimensional multipliers and Pontryagin principles for discrete-time problems. Pure Appl Funct Anal 2:411–426

    MathSciNet  MATH  Google Scholar 

  10. Bardi M (2009) On differential games with long-time-average cost. Advances in Dynamic Games and their Applications, Birkhauser, pp 3–18

    MATH  Google Scholar 

  11. Baumeister J, Leitao A, Silva GN (2007) On the value function for nonautonomous optimal control problem with infinite horizon, Syst Control Lett 56:188–196

    Article  MathSciNet  MATH  Google Scholar 

  12. Blot J (2009) Infinite-horizon Pontryagin principles without invertibility. J Nonlinear Convex Anal 10:177–189

    MathSciNet  MATH  Google Scholar 

  13. Blot J, Cartigny P (2000) Optimality in infinite-horizon variational problems under sign conditions, J Optim Theory Appl 106:411–419

    Article  MathSciNet  MATH  Google Scholar 

  14. Blot J, Hayek N (2000) Sufficient conditions for infinite-horizon calculus of variations problems. ESAIM Control Optim Calc Var 5:279–292

    Article  MathSciNet  MATH  Google Scholar 

  15. Blot J, Hayek N (2014) Infinite-horizon optimal control in the discrete-time framework. SpringerBriefs in Optimization, New York

    Book  MATH  Google Scholar 

  16. Bright I (2012) A reduction of topological infinite-horizon optimization to periodic optimization in a class of compact 2-manifolds. J Math Anal Appl 394:84–101

    Article  MathSciNet  MATH  Google Scholar 

  17. Brock WA (1970) On existence of weakly maximal programmes in a multi-sector economy. Rev Eco Stud 37:275–280

    Article  MATH  Google Scholar 

  18. Carlson DA (1990) The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay. SIAM J Control Optim 28:402–422

    Article  MathSciNet  MATH  Google Scholar 

  19. Carlson DA, Haurie A, Leizarowitz A (1991) Infinite horizon optimal control. Springer, Berlin

    Book  MATH  Google Scholar 

  20. Carlson DA, Jabrane A, Haurie A (1987) Existence of overtaking solutions to infinite dimensional control problems on unbounded time intervals. SIAM J Contl Optim 25:1517–1541

    Article  MathSciNet  MATH  Google Scholar 

  21. Cartigny P, Michel P (2003) On a sufficient transversality condition for infinite horizon optimal control problems. Automatica J IFAC 39:1007–1010

    Article  MathSciNet  MATH  Google Scholar 

  22. Cellina A, Colombo G (1990) On a classical problem of the calculus of variations without convexity assumptions. Ann Inst H Poincare Anal Non Lineare 7:97–106

    Article  MathSciNet  MATH  Google Scholar 

  23. Cesari L (1983) Optimization – theory and applications. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Coleman BD, Marcus M, Mizel VJ (1992) On the thermodynamics of periodic phases. Arch Ration Mech Anal 117:321–347

    Article  MathSciNet  MATH  Google Scholar 

  25. Damm T, Grune L, Stieler M, Worthmann K (2014) An exponential turnpike theorem for dissipative discrete time optimal control problems. SIAM J Control Optim 52:1935–1957

    Article  MathSciNet  MATH  Google Scholar 

  26. De Oliveira VA, Silva GN (2009) Optimality conditions for infinite horizon control problems with state constraints. Nonlinear Anal 71:1788–1795

    Article  MathSciNet  MATH  Google Scholar 

  27. Evstigneev IV, Flam SD (1998) Rapid growth paths in multivalued dynamical systems generated by homogeneous convex stochastic operators. Set Valued Anal 6:61–81

    Article  MathSciNet  MATH  Google Scholar 

  28. Gaitsgory V, Rossomakhine S, Thatcher N (2012) Approximate solution of the HJB inequality related to the infinite horizon optimal control problem with discounting. Dyn Contin Discrete Impuls Syst Ser B 19:65–92

    MathSciNet  MATH  Google Scholar 

  29. Gaitsgory V, Grune L, Thatcher N (2015) Stabilization with discounted optimal control. Syst Control Lett 82:91–98

    Article  MathSciNet  MATH  Google Scholar 

  30. Gaitsgory V, Mammadov M, Manic L (2017) On stability under perturbations of long-run average optimal control problems. Pure Appl Funct Anal 2:461–476

    MathSciNet  MATH  Google Scholar 

  31. Gaitsgory V, Parkinson, A, Shvartsman, I (2017) Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time. Discrete Contin Dyn Syst Ser B 22:3821–3838

    MathSciNet  MATH  Google Scholar 

  32. Gale D (1967) On optimal development in a multi-sector economy. Rev Econ Stud 34:1–18

    Article  Google Scholar 

  33. Ghosh MK, Mallikarjuna Rao KS (2005) Differential games with ergodic payoff. SIAM J Control Optim 43:2020–2035

    Article  MathSciNet  MATH  Google Scholar 

  34. Glizer VY, Kelis O (2017) Upper value of a singular infinite horizon zero-sum linear-quadratic differential game. Pure Appl Funct Anal 2:511–534

    MathSciNet  MATH  Google Scholar 

  35. Grune L, Guglielmi R (2018) Turnpike properties and strict dissipativity for discrete time linear quadratic optimal control problems. SIAM J Control Optim 56:1282–1302

    Article  MathSciNet  MATH  Google Scholar 

  36. Gugat M (2019) A turnpike result for convex hyperbolic optimal boundary control problems. Pure Appl Funct Anal 4:849–866

    MathSciNet  MATH  Google Scholar 

  37. Gugat M, Hante FM (2019) On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems. SIAM J Control Optim 57:264–289

    Article  MathSciNet  MATH  Google Scholar 

  38. Gugat M, Trelat E, Zuazua, E (2016) Optimal Neumann control for the 1D wave equation: finite horizon, infinite horizon, boundary tracking terms and the turnpike property. Syst Control Lett 90:61–70

    Article  MathSciNet  MATH  Google Scholar 

  39. Guo X, Hernandez-Lerma O (2005) Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates. Bernoulli 11:1009–1029

    Article  MathSciNet  MATH  Google Scholar 

  40. Hannon J, Marcus, M, Mizel VJ (2003) A variational problem modelling behavior of unorthodox silicon crystals. ESAIM Control Optim Calc Var 9:145–149

    Article  MathSciNet  MATH  Google Scholar 

  41. Hayek N (2011) Infinite horizon multiobjective optimal control problems in the discrete time case. Optimization 60:509–529

    Article  MathSciNet  MATH  Google Scholar 

  42. Hernandez-Lerma O, Lasserre JB (2001) Zero-sum stochastic games in Borel spaces: average payoff criteria. SIAM J Control Optim 39:1520–1539

    Article  MathSciNet  MATH  Google Scholar 

  43. Hritonenko NV, Yatsenko Yu (1997) Turnpike theorems in an integral dynamic model of economic restoration. Cybernet Syst Anal 33:259–273

    Article  MathSciNet  Google Scholar 

  44. Hritonenko N, Yatsenko Y (2005) Turnpike and optimal trajectories in integral dynamic models with endogenous delay. J Optim Theory Appl 127:109–127

    Article  MathSciNet  MATH  Google Scholar 

  45. Ioffe AD, Zaslavski AJ (2000) Variational principles and well-posedness in optimization and calculus of variations. SIAM J Control Optim 38:566–581

    Article  MathSciNet  MATH  Google Scholar 

  46. Jasso-Fuentes H, Hernandez-Lerma O (2008) Characterizations of overtaking optimality for controlled diffusion processes. Appl Math Optim 57:349–369

    Article  MathSciNet  MATH  Google Scholar 

  47. Jeng HC, Williams ED (1999), Steps on surfaces: experiment and theory. Surf Sci Rep 34:175–294

    Article  Google Scholar 

  48. Khan MA, Zaslavski AJ (2010) On two classical turnpike results for the Robinson-Solow-Srinivisan (RSS) model. Adv Math Econom 13:47–97

    Article  MATH  Google Scholar 

  49. Khlopin DV (2013) Necessity of vanishing shadow price in infinite horizon control problems. J Dyn Control Syst 19:519–552

    Article  MathSciNet  MATH  Google Scholar 

  50. Khlopin DV (2017) On Lipschitz continuity of value functions for infinite horizon problem. Pure Appl Funct Anal 2:535–552

    MathSciNet  MATH  Google Scholar 

  51. Kolokoltsov V, Yang W (2012) The turnpike theorems for Markov games. Dyn Games Appl 2:294–312

    Article  MathSciNet  MATH  Google Scholar 

  52. Leizarowitz A (1985) Infinite horizon autonomous systems with unbounded cost. Appl Math Opt 13:19–43

    Article  MathSciNet  MATH  Google Scholar 

  53. Leizarowitz A (1986) Tracking nonperiodic trajectories with the overtaking criterion. Appl Math Opt 14:155–171

    Article  MathSciNet  MATH  Google Scholar 

  54. Leizarowitz A, Mizel VJ (1989) One dimensional infinite horizon variational problems arising in continuum mechanics. Arch Ration. Mech Anal 106:161–194

    Article  MathSciNet  MATH  Google Scholar 

  55. Leizarowitz A, Zaslavski AJ (2005) On a class of infinite horizon optimal control problems with periodic cost functions. J Nonlinear Convex Anal 6:71–91

    MathSciNet  MATH  Google Scholar 

  56. Lykina V, Pickenhain S, Wagner M (2008) Different interpretations of the improper integral objective in an infinite horizon control problem. J Math Anal Appl 340:498–510

    Article  MathSciNet  MATH  Google Scholar 

  57. Makarov VL, Rubinov AM (1977) Mathematical theory of economic dynamics and equilibria. Springer, New York

    Book  MATH  Google Scholar 

  58. Malinowska AB, Martins N, Torres DFM (2011) Transversality conditions for infinite horizon variational problems on time scales. Optim Lett 5:41–53

    Article  MathSciNet  MATH  Google Scholar 

  59. Mammadov M (2014) Turnpike theorem for an infinite horizon optimal control problem with time delay. SIAM J Control Optim 52:420–438

    Article  MathSciNet  MATH  Google Scholar 

  60. Marcus M, Zaslavski AJ (1999) On a class of second order variational problems with constraints. Israel J Math 111:1–28

    Article  MathSciNet  MATH  Google Scholar 

  61. Marcus M, Zaslavski AJ (1999) The structure of extremals of a class of second order variational problems. Ann Inst H Poincaré Anal Non Linéaire 16:593–629

    Article  MathSciNet  MATH  Google Scholar 

  62. Marcus M, Zaslavski AJ (2002) The structure and limiting behavior of locally optimal minimizers. Ann Inst H Poincaré Anal Non Linéaire 19:343–370

    Article  MathSciNet  MATH  Google Scholar 

  63. McKenzie LW (1976) Turnpike theory. Econometrica 44:841–866

    Article  MathSciNet  MATH  Google Scholar 

  64. Mizel VJ, Zaslavski AJ (2004) Anisotropic functions: a genericity result with crystallographic implications. ESAIM Control Optim Calc Var 10:624–633

    Article  MathSciNet  MATH  Google Scholar 

  65. Mordukhovich BS (1988) Approximation methods in optimization and control. Nauka, Moscow

    MATH  Google Scholar 

  66. Mordukhovich BS (1990) Minimax design for a class of distributed parameter systems. Automat Remote Control 50:1333–1340

    MATH  Google Scholar 

  67. Mordukhovich BS (1999) Existence theorems in nonconvex optimal control. Calculus of Variations and Optimal Control. CRC Press, Boca Raton pp 175–197

    Google Scholar 

  68. Mordukhovich BS (2011) Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions. Appl Anal 90:1075–1109

    Article  MathSciNet  MATH  Google Scholar 

  69. Mordukhovich BS, Shvartsman I (2004) Optimization and feedback control of constrained parabolic systems under uncertain perturbations. Optimal control, stabilization and nonsmooth analysis. Lecture Notes Control Information Sciences. Springer, Berlin, pp 121–132

    Google Scholar 

  70. Moser J (1986) Minimal solutions of variational problems on a torus. Ann Inst H Poincaré Anal Non Linéaire 3:229–272

    Article  MathSciNet  MATH  Google Scholar 

  71. Ocana Anaya E, Cartigny P, Loisel P (2009) Singular infinite horizon calculus of variations. Applications to fisheries management. J Nonlinear Convex Anal 10:157–176

    MATH  Google Scholar 

  72. Pickenhain S, Lykina V, Wagner M (2008) On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control Cybernet 37:451–468

    MathSciNet  MATH  Google Scholar 

  73. Porretta A, Zuazua E (2013) Long time versus steady state optimal control. SIAM J Control Optim 51:4242–4273

    Article  MathSciNet  MATH  Google Scholar 

  74. Prieto-Rumeau T, Hernandez-Lerma O (2005) Bias and overtaking equilibria for zero-sum continuous-time Markov games. Math Methods Oper Res 61:437–454

    Article  MathSciNet  MATH  Google Scholar 

  75. Reich S, Zaslavski AJ (2014) Genericity in nonlinear analysis. Springer, New York

    Book  MATH  Google Scholar 

  76. Rubinov AM (1984) Economic dynamics. J Soviet Math 26:1975–2012

    Article  MATH  Google Scholar 

  77. Sagara N (2018) Recursive variational problems in nonreflexive Banach spaces with an infinite horizon: an existence result. Discrete Contin Dyn Syst Ser S 11:1219–1232

    MathSciNet  MATH  Google Scholar 

  78. Samuelson PA (1965) A catenary turnpike theorem involving consumption and the golden rule. Am Econ Rev 55:486–496

    Google Scholar 

  79. Semenov KE, Hritonenko NV, Yatsenko Yu (1992) Turnpike properties of the optimal periods of the service of funds. Dokl Akad Nauk Ukrainy 173:76–80

    MathSciNet  Google Scholar 

  80. Tonelli L (1921) Fondamenti di Calcolo delle Variazioni. Zanicelli, Bolonia

    Google Scholar 

  81. Trelat E, Zhang C, Zuazua E (2018) Optimal shape design for 2D heat equations in large time. Pure Appl Funct Anal 3:255–269

    MathSciNet  MATH  Google Scholar 

  82. Trelat E, Zhang C, Zuazua E (2018) Steady-state and periodic exponential turnpike property for optimal control problems in Hilbert spaces. SIAM J Control Optim 56:1222–1252

    Article  MathSciNet  MATH  Google Scholar 

  83. von Weizsacker CC (1965) Existence of optimal programs of accumulation for an infinite horizon. Rev Econ Stud. 32:85–104

    Article  Google Scholar 

  84. Zaslavski AJ (1987) Ground states in Frenkel-Kontorova model. Math USSR Izvestiya 29:323–354

    Article  MATH  Google Scholar 

  85. Zaslavski AJ (1995) Optimal programs on infinite horizon 1. SIAM J Control Optim 33:1643–1660

    Article  MathSciNet  MATH  Google Scholar 

  86. Zaslavski AJ (1995) Optimal programs on infinite horizon 2. SIAM J Control Optim 33:1661–1686

    Article  MathSciNet  MATH  Google Scholar 

  87. Zaslavski AJ (1996) Dynamic properties of optimal solutions of variational problems. Nonlinear Anal 27:895–931

    Article  MathSciNet  MATH  Google Scholar 

  88. Zaslavski AJ (1998) Turnpike theorem for convex infinite dimensional discrete-time control systems. J Convex Anal. 5:237–248

    MathSciNet  MATH  Google Scholar 

  89. Zaslavski AJ (2000) The turnpike property for extremals of nonautonomous variational problems with vector-valued functions. Nonlinear Anal 42:1465–1498

    Article  MathSciNet  MATH  Google Scholar 

  90. Zaslavski AJ (2000) Existence and structure of optimal solutions of infinite dimensional control systems. Appl Math Optim 42:291–313

    Article  MathSciNet  MATH  Google Scholar 

  91. Zaslavski AJ (2000) Turnpike theorem for nonautonomous infinite dimensional discrete-time control systems. Optimization 48:69–92

    Article  MathSciNet  MATH  Google Scholar 

  92. Zaslavski AJ (2001) Existence of solutions of minimization problems with a generic cost function. Comm Appl Nonlinear Anal 8:1–21

    MathSciNet  MATH  Google Scholar 

  93. Zaslavski AJ (2001) Generic existence of solutions of minimization problems with constraints. Comm Appl Nonlinear Anal 8:31–42

    MathSciNet  MATH  Google Scholar 

  94. Zaslavski AJ (2004) The structure of approximate solutions of variational problems without convexity. J Math Anal Appl 296:578–593

    Article  MathSciNet  MATH  Google Scholar 

  95. Zaslavski AJ (2005) The turnpike property of discrete-time control problems arising in economic dynamics. Discrete Contin Dynam Syst B 5:861–880

    Article  MathSciNet  MATH  Google Scholar 

  96. Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Springer, New York

    MATH  Google Scholar 

  97. Zaslavski AJ (2006) The turnpike result for approximate solutions of nonautonomous variational problems. J Aust Math Soc 80:105–130

    Article  MathSciNet  MATH  Google Scholar 

  98. Zaslavski AJ (2006) A porosity result for variational problems arising in crystallography. Commun Appl Anal 10:537–548

    MathSciNet  MATH  Google Scholar 

  99. Zaslavski AJ (2007) Turnpike results for a discrete-time optimal control systems arising in economic dynamics. Nonlinear Anal 67:2024–2049

    Article  MathSciNet  MATH  Google Scholar 

  100. Zaslavski AJ (2009) Two turnpike results for a discrete-time optimal control systems. Nonlinear Anal 71:902–909

    Article  MathSciNet  Google Scholar 

  101. Zaslavski AJ (2010) Stability of a turnpike phenomenon for a discrete-time optimal control systems. J Optim Theory Appl 145:597–612

    Article  MathSciNet  MATH  Google Scholar 

  102. Zaslavski AJ (2010) Optimization on metric and normed spaces. Springer, New York

    Book  MATH  Google Scholar 

  103. Zaslavski AJ (2011) Turnpike properties of approximate solutions for discrete-time control systems. Commun Math Anal 11:36–45

    MathSciNet  MATH  Google Scholar 

  104. Zaslavski AJ (2011) Structure of approximate solutions for a class of optimal control systems. J Math Appl 34:1–14

    MathSciNet  Google Scholar 

  105. Zaslavski AJ (2011) Stability of a turnpike phenomenon for a class of optimal control systems in metric spaces. Numer Algebra Control Optim 1:245–260

    Article  MathSciNet  MATH  Google Scholar 

  106. Zaslavski AJ (2011) The existence and structure of approximate solutions of dynamic discrete time zero-sum games. J Nonlinear Convex Anal 12:49–68

    MathSciNet  MATH  Google Scholar 

  107. Zaslavski AJ (2012) A generic turnpike result for a class of discrete-time optimal control systems. Dyn Contin Discrete Impuls Syst Ser B 19:225–265

    MathSciNet  MATH  Google Scholar 

  108. Zaslavski AJ (2012) Existence and turnpike properties of solutions of dynamic discrete time zero-sum games. Commun Appl Anal 16:261–276

    MathSciNet  MATH  Google Scholar 

  109. Zaslavski AJ (2013) Nonconvex optimal control and variational problems. Springer Optimization and Its Applications, New York

    Book  MATH  Google Scholar 

  110. Zaslavski AJ (2013) Structure of approximate solutions of optimal control problems. SpringerBriefs in Optimization, New York

    Book  MATH  Google Scholar 

  111. Zaslavski AJ (2013) Necessary and sufficient conditions for turnpike properties of solutions of optimal control systems arising in economic dynamics. Dyn Contin Discrete Impulsive Syst Ser B Appl Algorithms 20:391–420

    MathSciNet  MATH  Google Scholar 

  112. Zaslavski AJ (2014) Turnpike properties of approximate solutions of nonconcave discrete-time optimal control problems. J Convex Anal 21:681–701

    MathSciNet  MATH  Google Scholar 

  113. Zaslavski AJ (2014) Turnpike phenomenon and infinite horizon optimal control. Springer Optimization and Its Applications, New York

    Book  MATH  Google Scholar 

  114. Zaslavski AJ (2014) Turnpike properties for nonconcave problems. Adv Math Eco 18:101–134

    Article  MathSciNet  MATH  Google Scholar 

  115. Zaslavski AJ (2014) Structure of solutions of discrete time optimal control problems in the regions close to the endpoints. Set Valued Var Anal 22:809–842

    Article  MathSciNet  MATH  Google Scholar 

  116. Zaslavski AJ (2014) Turnpike theory for dynamic zero-sum games. In: Proceedings of the workshop “Variational and optimal control problems on unbounded domains”, Haifa. 2012, Contemporary Mathematics, vol 619, pp 225–247

    Google Scholar 

  117. Zaslavski AJ (2014) Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. J Dyn Games 2014:299–330

    Article  MathSciNet  MATH  Google Scholar 

  118. Zaslavski AJ (2014) Stability of the turnpike phenomenon in discrete-time optimal control problems. SpringerBriefs in Optimization, New York

    Book  MATH  Google Scholar 

  119. Zaslavski AJ (2015) Convergence of solutions of optimal control problems with discounting on large intervals in the regions close to the endpoints. Set Valued Var Anal 23:191–204

    Article  MathSciNet  MATH  Google Scholar 

  120. Zaslavski AJ (2015) Structure of approximate solutions of discrete time optimal control Bolza problems on large intervals. Nonlinear Anal 123–124:23–55

    Article  MathSciNet  MATH  Google Scholar 

  121. Zaslavski AJ (2015) Discrete time optimal control problems on large intervals. Adv Math Eco 19:91–135

    Article  MathSciNet  MATH  Google Scholar 

  122. Zaslavski AJ (2015) Turnpike theory of continuous-time linear optimal control problems. Springer Optimization and Its Applications. Cham, Heidelberg

    Book  Google Scholar 

  123. Zaslavski AJ (2016) Convergence of solutions of concave discrete optimal control problems in the regions close to the endpoints. Commun Appl Nonlinear Anal 23:1–10

    MathSciNet  MATH  Google Scholar 

  124. Zaslavski AJ (2016) Structure of solutions of optimal control problems on large intervals: a survey of recent results. Pure Appl Funct Anal 1:123–158

    MathSciNet  Google Scholar 

  125. Zaslavski AJ (2016) Linear control systems with nonconvex integrands on large intervals. Pure Appl Funct Anal 1:441–474

    MathSciNet  MATH  Google Scholar 

  126. Zaslavski AJ (2017) Bolza optimal control problems with linear equations and nonconvex integrands on large intervals. Pure Appl Funct Anal 2:153–182

    MathSciNet  MATH  Google Scholar 

  127. Zaslavski AJ (2017) Discrete-time optimal control and games on large intervals. Springer Optimization and Its Applications, Springer, Berlin

    Google Scholar 

  128. Zaslavski AJ (2019) Turnpike conditions in infinite dimensional optimal control, Springer Optimization and Its Applications, Springer, Berlin

    Google Scholar 

  129. Zaslavski AJ (2020) Generic existence of solutions of symmetric optimization problems. Symmetry 12(12):2004. https://doi.org/10.3390/sym12122004

    Article  Google Scholar 

  130. Zaslavski AJ (2021) Generic well-posedness of symmetric minimization problems. Appl Anal Optim 5:343–356

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zaslavski .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaslavski, A. (2022). Introduction. In: Turnpike Phenomenon and Symmetric Optimization Problems. Springer Optimization and Its Applications, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-030-96973-8_1

Download citation

Publish with us

Policies and ethics