Skip to main content

The Recombinant DNA Technology Era

  • Chapter
  • First Online:
A Complete Guide to Gene Cloning: From Basic to Advanced

Abstract

Humans have been practicing biotechnology since a long time ago to prepare fermented food and beverages and to treat diseases. Onset of the microscopic era in the seventeenth century gave a momentum to the use of microbes in various applications. With rapid evolution of technologies, today biotechnology has become an indispensable part of various industries. One of the most important developments in biotechnology has been the concept of recombinant DNA, where organisms can be genetically modified to suit the requirements. Several DNA editing tools and methods have evolved to precisely control the manipulation of the genome in any living organism, simplify the tedious procedures, making it faster and cheaper. In this chapter, we will discuss the fascinating progress that has been made in this technology over the past centuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhatia S, Goli D. Introduction to pharmaceutical biotechnology. In: Basic techniques and concepts, vol. 1. Bristol: IOP Publishing; 2018.

    Google Scholar 

  2. Primrose B, Twyman R. Principles of gene manipulation and genomics. Wiley; 2013.

    Google Scholar 

  3. Cohen SN, Chang ACY, Boyer W, Helling B. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A. 1973;70(11):3240–4.

    Article  CAS  Google Scholar 

  4. Mendel G. Versuche uber Pflanzen-Hybriden. Verh. Naturforsch. Ver. Brunn 4 3-47 English translation in 1901. JR Hortic Soc. 1886, 26:1–32.

    Google Scholar 

  5. Sutton S. The chromosomes in heredity. Biol Bull. 1903;4(5):231–50.

    Article  Google Scholar 

  6. Morgan H. Sex limited inheritance in Drosophila. Science. 1910;32(812):120–2.

    Article  CAS  Google Scholar 

  7. Morgan H. The theory of the gene. New Haven: Yale University Press; 1926.

    Google Scholar 

  8. Garrod A. The incidence of alkaptonuria: a study in chemical individuality. Lancet. 1902;160(4137):1616–20.

    Article  Google Scholar 

  9. Beadle W, Tatum L. Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci U S A. 1941;27(11):499.

    Article  CAS  Google Scholar 

  10. Lewis B. Pseudoallelism and gene evolution. In: Cold Spring Harbor symposia on quantitative biology, vol. 16. Cold Spring Harbor Laboratory Press; 1951. p. 159–74.

    Google Scholar 

  11. Benzer S. The elementary units of heredity. In: McElroy WD, Glass B, editors. The chemical basis of heredity. Baltimore: The Johns Hopkins University Press; 1957. p. 70–93.

    Google Scholar 

  12. Gamow G. Possible relation between deoxyribonucleic acid and protein structures. Nature. 1954;173(4398):318.

    Article  CAS  Google Scholar 

  13. Yanofsky C, Crawford P. The effects of deletions, point mutations, reversions and suppressor mutations on the two components of the tryptophan synthetase of Escherichia coli. Proc Natl Acad Sci U S A. 1959;45(7):1016.

    Article  CAS  Google Scholar 

  14. Lobban E, Kaiser D. Enzymatic end-to-end joining of DNA molecules. J Mol Biol. 1973;78(3):453–71.

    Article  CAS  Google Scholar 

  15. Mertz E, Davis W. Cleavage of DNA by R1 restriction endonuclease generates cohesive ends. Proc Natl Acad Sci U S A. 1972;69(11):3370–4.

    Article  CAS  Google Scholar 

  16. Jackson A, Symons H, Berg P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A. 1972;69(10):2904–9.

    Article  CAS  Google Scholar 

  17. Chang C, Cohen N. Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc Natl Acad Sci U S A. 1974;71(4):1030–4.

    Article  CAS  Google Scholar 

  18. Morrow F, Cohen N, Chang C, Boyer W, Goodman M, Helling B. Replication and transcription of eukaryotic DNA in Esherichia coli. Proc Natl Acad Sci U S A. 1974;71(5):1743–7.

    Article  CAS  Google Scholar 

  19. Saltepe B, Kehribar S, Su Yirmibeşoğlu S, Şafak Şeker O. Cellular biosensors with engineered genetic circuits. ACS Sens. 2018;3(1):13–26.

    Article  CAS  Google Scholar 

  20. Sandeep V, Parveen J, Chauhan P. Biobetters: the better biologics and their regulatory overview. Int J Drug Regul Aff. 2016;4(1):13–20.

    Google Scholar 

  21. Hanlon P, Sewalt V. GEMs: genetically engineered microorganisms and the regulatory oversight of their uses in modern food production. Crit Rev Food Sci Nutr. 2020;61(6):959–70.

    Article  Google Scholar 

  22. Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleer M, Dean C, Leemans J. Insect resistance in transgenic plants expressing modified Bacillus thuringiensis toxin genes. Nature. 1987;328:33–7.

    Article  CAS  Google Scholar 

  23. Cotter J, Perls D: “Genetically Engineered Animals: From Lab to Factory Farm”, FRIENDS OF THE EARTH, September 2019 (2019-09-01), pages 1–41, XP055722286 (TPO)

    Google Scholar 

  24. Petersen B, Niemann H. Molecular scissors and their application in genetically modified farm animals. Transgenic Res. 2015;24(3):381–96.

    Article  CAS  Google Scholar 

  25. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.

    Article  CAS  Google Scholar 

  26. Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Nucl Acids. 2019;16:326–34.

    Article  CAS  Google Scholar 

  27. Cong L, Ran A, Cox D, Lin S, Barretto R, Habib N, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  Google Scholar 

  28. Tolentino M. Interference RNA technology in the treatment of CNV. Ophthalmol Clin N Am. 2006;19(3):393–9.

    Google Scholar 

  29. Setten L, Rossi J, Han P. The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 2019;18(6):421–46.

    Article  CAS  Google Scholar 

  30. Xue S, Yin J, Shao J, Yu Y, Yang L, Wang Y, Ye H. A synthetic-biology-inspired therapeutic strategy for targeting and treating hepatogenous diabetes. Mol Ther. 2017;25(2):443–55.

    Article  CAS  Google Scholar 

  31. Hossain G, Saini M, Miyake R, Ling H, Chang M. Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol. 2020;38(7):797–810.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayana Patil .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Modak, M., Nyayanit, N., Sivaram, A., Patil, N. (2022). The Recombinant DNA Technology Era. In: A Complete Guide to Gene Cloning: From Basic to Advanced . Techniques in Life Science and Biomedicine for the Non-Expert. Springer, Cham. https://doi.org/10.1007/978-3-030-96851-9_1

Download citation

Publish with us

Policies and ethics