Skip to main content

MTConnect and Digital Twin Applications and Future Perspectives

  • Chapter
  • First Online:
Digital Twins for Digital Transformation: Innovation in Industry

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 423))

  • 1176 Accesses

Abstract

Intelligent manufacturing ecosystem and using Industry 4.0 strategic plan as a one-stop-shop services promise increasing flexibility in the digital manufacturing process, mass customization of manufacturing integration, better quality, beneficially, and improved productivity. This chapter demonstrates state-of-art technologies that include several applications of MTConnect standard technology and the digital twin, and an affordable digital twin solution for small and medium-sized enterprises (SMEs) is proposed based on [1, 2]. The chapter points to current and future challenges, limitations, and necessary changes in a digital twin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Dubaee, S., Juneja, J.: An affordable portable IoT development kit and I4.0 platform an internal report of Advanced Forming Research Centre (AFRC), DMEM, Strathclyde University, Scotland (2020)

    Google Scholar 

  2. Lu, Y., Liu, C., Wang, K.-K., Huang, H., Xu, X.: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 61, 1–14 (2020)

    Google Scholar 

  3. Zhong, R.Y., Xu, X., Klotz, E., Newman, S.T.: Intelligent manufacturing in the context of industry 4.0: a review. Engineering 3(5), 616–630 (2017)

    Google Scholar 

  4. Fisher, R., Shao, G.: Testing of the MTConnect-OPC UA Compnation Specification. Erie, PA, USA (2019)

    Google Scholar 

  5. Bamunuarachchi, D., Banerjee, A., Jayaraman, P.P., Georgakopoulos, D.: Cyber Twins Supporting Industry 4.0 Application Development. Chiang Mai, Thailand, ACM, New York, USA (2020)

    Google Scholar 

  6. Xing, K., Liu, X., Liu, Z., Mayer, J., Achiche, S. Low Cost Precsion Monitoring System of machine Tools for SMEs. Canada (2021)

    Google Scholar 

  7. Shao, G., Kibira, D.: Digital Manufacturing: Requirements and Challenges for Implementing Digital Surrogates. Washington DC, (2018)

    Google Scholar 

  8. Zhong, L., Yongliang, L., Fei, T., Hu, L.B., Lei, R., Xuesong, Z., Hua, G., Ying, C., Anrui, H., Ying, C., Anrui, H., Yongkui, L.: Cloud manufacturing: a new manufacturing paradigm. Enterp. Inf. Syst. 8(2), 167–187 (2012)

    Article  Google Scholar 

  9. Tao, F., Cheng, J., Qi, Q., Zhang, M., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. J. Manuf. Syst. 157–169 (2018)

    Google Scholar 

  10. Liu, M., Ma, J., Lin, L., Ge, M., Wang, Q., Liu, C.: Intelligent assembly system for mechanical products and key technology based on internet of things. J. Intell. Manuf. 28(02), 271–299 (2017)

    Article  Google Scholar 

  11. Parwekar, P.: From internet of things towards cloud of things. In: 2nd International Conference on Computer and Communication Technology (ICCCT) (2011)

    Google Scholar 

  12. Sauter, T.: The three generations of field-level networks—evolution and compatibility issues. IEEE Trans. Industr. Electron. 57(11), 3585–3595 (2010)

    Article  Google Scholar 

  13. Bertoluzzo, M., Buja, G., Vitturi, S.: Ethernet networks for factory automation. In: IEEE International Symposium on Industrial Electronics (2002)

    Google Scholar 

  14. Vitturi, S., Sauter, T., Pang, Z.: Real-time networks and protocols for factory automation and process control systems [scanning the issue] 107(6), 939–943 (2019)

    Google Scholar 

  15. Immerman, G.: The Machine Builders’ Guide to Remote Machine Monitoring,” machinemetrics. https://www.machinemetrics.com/ (2018). Accessed 04 June 2021

  16. Wang, L., Orban, P., Cunningham, A., Lang, S.: Remote real-time CNC machining for web-based manufacturing. Robot. Comput. Integr. Manuf. 20, 563–571 (2004)

    Article  Google Scholar 

  17. Newman, D., Parto, M., Saleeby, K., Kurfess, T., Dugenske, A.: Development of a Digital Architecture for Distributed CNC Machine Health Monitoring, 1–19 (2019)

    Google Scholar 

  18. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer International Publishing Switzerland, NASA MSFC, Huntsville, AL, USA (2017)

    Google Scholar 

  19. Pokhrel, A., Katta, V., Palacios, R.C.: Digital Twin for Cybersecurity Incident Prediction: A Multivocal Literature Review. Republic of Korea, Seoul (2020)

    Book  Google Scholar 

  20. Huang, S., Zhou, C.-J., Yang, S.-H.: Cyber-physical system security for networked industrial processes. Int. J. Autom. Comput. 12(6), 567–578 (2015)

    Article  Google Scholar 

  21. Dong, P., Han, Y., Guo, X., Xie, F.: A systematic review of studies on cyber physical system security. Int. J. Secur. Appli. 09(01), 155–164 (2015)

    Google Scholar 

  22. Tao, F., Zhang, M., Nee, A.Y.C.: Digial Twin Driven Smart Manufacturing, 1st edn. Academic Press is an imprint of Elsevier, Chennai, India (2019)

    Google Scholar 

  23. Hribernik, K.A., Rabe, L., Schumacher, J., Thoben, K.D.: Int. J. Prod. Lifecycle Manag. 4(1), 367–379 (2006)

    Google Scholar 

  24. Grieves M.W.: Virtually intelligent product systems:digital and physical twins. In: Complex Systems Enginnering:Theroy and Practice, Florida Institute of Technology, Melbourne, FL USA, American Institute of Aeronautics and Astronautics, pp 175–200 (2019)

    Google Scholar 

  25. Hehenberger, P., Bradley, D.: Mechatronic Futures Challenges and Solutions for Mechatronic Systems and their Designers, pp. 1–273. Springer International, AG Switzerland (2016)

    Google Scholar 

  26. Glaessgen, E.H., Stargel, D.S.: The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. Honolulu, United States (2012)

    Google Scholar 

  27. Jaensch, F., Csiszar, A., Scheifele, C., Verl, A.: Digital twins of manufacturing systems as a base for machine learning. In: Mechatronics and Machine Vision in Practice (M2VIP) (2018)

    Google Scholar 

  28. Soderberg, R., Warmefjord, K., Carlson, J.S., Lindkvist, L.: Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Ann. Manuf. Technol. 66(1), 137–140 (2017)

    Article  Google Scholar 

  29. Xia, K., Sacco, C., Kirkpatrick, M., Saidy, C., Nguyen, L., Kircaliali, A., Harik, R.: A digital twin to train deep reinforcement learning agent for smart manufacturing plants: environment, interfaces and intelligence. J. Manuf. Syst. 58, 210–230 (2021)

    Google Scholar 

  30. Min, Q., Lu, Y., Liu, Z., Su, C., Wang, B.: Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manage. 49, 502–519 (2019)

    Article  Google Scholar 

  31. Yildiz, E., Moller, C., Bilberg, A.: Virtual factory: digital twin based integrated factory simulations. In: Virtual Factory: Digital Twin Based Integrated Factory Simulations. Denmark (2020)

    Google Scholar 

  32. Qi, Q., Tao, F.: Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. Digit. Object Identifier 6, 3585–3593 (2018)

    Google Scholar 

  33. Rosen, R., Wichert, G.V., Lo, G., Bettenhausen, K.D.: About the importance of autonomy and digital twins for the future of manufacturing. In IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd (2015)

    Google Scholar 

  34. Zhoua, G., Zhanga, C., Li, Z., Ding, K., Wang, C.: Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int. J. Prod. Res. 58, 1034–1051 (2020)

    Article  Google Scholar 

  35. Aheleroff, S., Xu, X., Zhong, R.Y., Lu, Y.: Digital twin as a service (DTaaS) in industry 4.0: an architecture reference model. Adv. Eng. Inform. 47, 1–15 (2021)

    Article  Google Scholar 

  36. European Commission: Internal Market, Industry, Entrepreneurship and SMEs. European Commission, 01 Jan 2020. https://ec.europa.eu/growth/industry_en (2020). Accessed 14 June 2021

  37. Edstrom, D.: The History of MTConnect®. http://photonsandelectrons.blogspot.com/2011/04/history-of-mtconnect.html (2011). Accessed 22 Feb 2021

  38. Navas, C.F., Yepesb, A.E., Abolghasem, S., Barbieri, G.: MTConnect-based decision support system for local machine tool monitoring. In: International Conference on Industry 4.0 and Smart Manufacturing, pp. 1–10 (2019)

    Google Scholar 

  39. Korn, D.: Remote honing analytics with MTconnect-compliant machines. Mach Technol Brief 89(10), 28–30 (2017)

    Google Scholar 

  40. Venkatesh, S., Ly, S., Manning, M., Michaloski, J., Proctor, F.: Automating Asset Knowledge With Mtconnect. U.S. Department of Commerce, vol. 03, p. 20. National Institute of Standards and Technology (2016)

    Google Scholar 

  41. Matt, D.T., Modrák, V., Zsifkovits, H.: Industry 4.0 for SMEs Challenges, Opportunities and Requirements, Gewerbestrasse 11, 6330. Springer International Publishing, Cham, Switzerland (2020)

    Google Scholar 

  42. Chalmers, R.: High-speed machining means more than quick spindles. High-Speed Mach 131(10), 34–36 (2019)

    Google Scholar 

  43. Cui, Y., Kara, S., Chan, K.C.: Large scale MTConnect data collection. IEEE Xplore 06 (2021)

    Google Scholar 

  44. Albert, M.: Metal working’s leading information resource, 01 April 2014. https://www.mmsonline.com/ (2014). Accessed 26 March 2021

  45. Jain, S., Shao, G., Shin, S.-J.: Manufacturing data analytics using a virtual factory representation. Int. J. Prod. Res. 55, 17 (2017)

    Google Scholar 

  46. Wang, L., Törngren, M., Onori, M.: Current status and advancement of cyber-physical systems in manufacturing. J. Manuf. Syst. 37, 517–527 (2015)

    Article  Google Scholar 

  47. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (IIoT): an analysis framework. Comput. Ind. 101, 1–12 (2018)

    Article  Google Scholar 

  48. Cheng, G.J., Liu, L.T., Qiang, X.J., Liu, Y.: Industry 4.0 Development and Application of Intelligent Manufacturing (2016)

    Google Scholar 

  49. Alguliyev, R., Imamverdiyev, Y., Sukhostat, L.: Cyber-physical systems and their security issues. Comput. Ind. 100, 212–223 (2018)

    Article  Google Scholar 

  50. Carvalho, N., Chaim, O., Cazarinia, E., Gerolamo, M.: Manufacturing in the fourth industrial revolution: A positive prospect in sustainable manufacturing (2018)

    Google Scholar 

  51. Rassam, M.A., Zainal, A., Maa, M.A.: An adaptive and efficient dimension reduction model for multivariate wireless sensor networks applications. Appl. Soft Comput. 13(4), 1978–1996 (2013)

    Article  Google Scholar 

  52. Fantini, P., Tavola, G., Taisch, M., Barbosa, J., Leitao, P., Liu, Y., Sayed, M.S., Lohse, N.: Exploring the integration of the human as a flexibility factor in CPS enabled manufacturing environments: methodology and results. IEEE, pp 1–6 (2016)

    Google Scholar 

  53. Liu, Z., Wang, Z., Ren, Y., Feng, Q., Fan, D., Zuo, Z.: A City medical resources distribution optimization platform based on Cyber-Physical Systems(CPS),” in IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control, pp 69-73 (2018)

    Google Scholar 

  54. Kale, G., Patil, A.: Prototype Architecture to Control Building Energy Usage Using PLC and CPS (2018)

    Google Scholar 

  55. Möller, D.P., Vakilzadian, H.: Cyber-Physical Systems in Smart Transportation (2016)

    Google Scholar 

  56. de Araujo, P.R.M., Lins, R.G.: Cloud-based approach for automatic CNC workpiece origin localization based on image analysis☆. Robot. Comput. Integr. Manuf. 68, 1–16 (2021)

    Article  Google Scholar 

  57. Konga, X.T., Zhong, R.Y., Zhao, Z., Shao, S., Li, M., Lin, P., Chen, Y., Wu, W., Shen, L., Yu, Y., Huang, G.Q.: Cyber physical ecommerce logistics system: an implementation case in Hong Kong. Comput. Ind. Eng. 139, 1–15 (2020)

    Google Scholar 

  58. Parris, C., P.S.V.P.: Chief Technology Officer, GE Digital: What is the industrial internet of things (IIoT)? https://www.ge.com/digital/blog/what-industrial-internet-things-iiot. (2019). Accessed 17 May 2021

  59. Omron: Advanced sensing solutions for cost-effective machine building. https://assets.omron.com/m/44e2ef9d76877d4c/original/Sensor-Machine-Builders-Whitepaper.pdf (2019). Accessed 21 Feb 2021

  60. Klaess, J.: Increase the productivity, quality and efficiency of your operations by implementing Industry 4.0 technologies with low investments and 10x faster than normal. www.konitech.com.br/a-convergencia-de-it-e-ot (2019). Accessed 17 May 2021

  61. Desrosiers, N.: Intelligent monitoring with MTConnect. Moldmaking Technol. Mag. 21(7), 48 (2018)

    Google Scholar 

  62. Zhang, J., Deng, T., Jiang, H., Chen, H., Qin, S., Ding, G.: Bi-level dynamic scheduling architecture based on service unit digital twin agents. J. Manuf. Syst. 60, 59–79 (2021)

    Article  Google Scholar 

  63. Beimborn, D., Miletzki, T., Wenzel, S.: Platform as a service (PaaS). Bus. Inf. Syst. Eng. 3(6), 381–384 (2011)

    Article  Google Scholar 

  64. Palos-Sanche, P.R., Arenas-Marquez, F., Aguayo-Camacho, M.: Cloud Computing (SaaS) Adoption as a Strategic Technology:Results of an Empirical Study. Hindawi, 1–20 (2017)

    Google Scholar 

  65. Ferguson, P., Huston, G.: What is a VPN? 1(01), 01–22 (1998)

    Google Scholar 

  66. Chirayil, A. Survey on Anomaly Detection in Wireless Sensor Networks (WSNs), 99p (2019)

    Google Scholar 

  67. Shao, G., Helu, M.: Framework for a digital twin in manufacturing: scope and requirements. Manuf. Lett. 24, 105–107 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi M. Sharadah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

M. Sharadah, F., Al-Dubaee, S., Weir, G. (2022). MTConnect and Digital Twin Applications and Future Perspectives. In: Hassanien, A.E., Darwish, A., Snasel, V. (eds) Digital Twins for Digital Transformation: Innovation in Industry. Studies in Systems, Decision and Control, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-030-96802-1_5

Download citation

Publish with us

Policies and ethics