Skip to main content

Automatic Control in Systems Biology

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

  • 4417 Accesses

Abstract

Reductionist approaches toward molecular and cellular biology have greatly advanced our understanding of biological function and information processing. To better map molecular components to systems-level understanding and emergent function, the relatively new field of systems biology was established. Systems biology enables the analysis of complex functions in networked biological systems using integrative (rather than reductionist) approaches, leveraging many principles, tools, and best practices common to control theory. Systems biology requires effective collaboration between experimental, theoretical, and computational scientists/engineers to effectively execute the tightly iterative design-build-test cycle that is critical to the understanding, development, and control of biological models. This chapter summarizes new developments of automatic control in systems biology, providing illustrative examples as well as theoretical background for select case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartocci, E., Lió, P.: Computational modeling, formal analysis, and tools for systems biology. PLOS Comput. Biol. 12(1), 1–22 (2016)

    Google Scholar 

  2. Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)

    Google Scholar 

  3. Szallasi, Z., Stelling, J., Periwal, V.: System Modeling in Cellular Biology: From Concepts to Nuts and Bolts. MIT Press, Cambridge (2010). OCLC: 868211437

    Google Scholar 

  4. Doyle III, F.J., Stelling, J.: Systems interface biology. J. R. Soc. Interface 3(10), 603–616 (2006)

    Google Scholar 

  5. Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells. Genetics 149(4), 1633–1648 (1998)

    Google Scholar 

  6. Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387(6636), 913–917 (1997)

    Google Scholar 

  7. Yi, T.M., Huang, Y., Simon, M.I., Doyle, J.: Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. U. S. A. 97(9), 4649–4653 (2000)

    Google Scholar 

  8. Ma, W., Trusina, A., El-Samad, H., Lim, W.A., Tang, C.: Defining network topologies that can achieve biochemical adaptation. Cell 138(4), 760–773 (2009)

    Google Scholar 

  9. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  10. Mirsky, H.P., Liu, A.C., Welsh, D.K., Kay, S.A., Doyle, F.J.: A model of the cell-autonomous mammalian circadian clock. Proc. Natl. Acad. Sci. 106(27), 11107–11112 (2009)

    MATH  Google Scholar 

  11. Forger, D.B., Peskin, C.S.: A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. U. S. A. 100(25), 14806–14811 (2003)

    Google Scholar 

  12. Stelling, J., Gilles, E.D., Doyle, F.J.: Robustness properties of circadian clock architectures. Proc. Natl. Acad. Sci. U. S. A. 101(36), 13210–13215 (2004)

    Google Scholar 

  13. Bagheri, N., Stelling, J., Doyle III, F.J.: Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics 23(3), 358–364 (2007)

    Google Scholar 

  14. Potvin-Trottier, L., Lord, n.d., Vinnicombe, G., Paulsson, J.: Synchronous long-term oscillations in a synthetic gene circuit. Nature 538(7626), 514–517 (2016)

    Google Scholar 

  15. Baetica, A.-A., Westbrook, A., El-Samad, H.: Control theoretical concepts for synthetic and systems biology. Curr. Opin. Syst. Biol. 14, 50–57 (2019). Synthetic biology

    Google Scholar 

  16. Muller, T.G., Faller, D., Timmer, J., Swameye, I., Sandra, O., Klingmuller, U.: Tests for cycling in a signalling pathway. J. R. Stat. Soc.: Ser. C: Appl. Stat. 53, 557–568 (2004)

    Google Scholar 

  17. Raj, A., van Oudenaarden, A.: Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2), 216–226 (2008)

    Google Scholar 

  18. Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J.: Robustness of cellular functions. Cell 118(6), 675–685 (2004)

    Google Scholar 

  19. Aoki, S.K., Lillacci, G., Gupta, A., Baumschlager, A., Schweingruber, D., Khammash, M.: A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570(7762), 533–537 (2019)

    Google Scholar 

  20. Zechner, C., Seelig, G., Rullan, M., Khammash, M.: Molecular circuits for dynamic noise filtering. Proc. Natl. Acad. Sci. 113(17), 4729–4734 (2016)

    Google Scholar 

  21. Wen, X.L., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L., Somogyi, R.: Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. U. S. A. 95(1), 334–339 (1998)

    Google Scholar 

  22. Lauffenburger, D.A.: Cell signaling pathways as control modules: complexity for simplicity? Proc. Natl. Acad. Sci. U. S. A. 97(10), 5031–5033 (2000)

    Google Scholar 

  23. Abel, J.H., Meeker, K., Granados-Fuentes, D., St. John, P.C., Wang, T.J., Bales, B.B., Doyle, F.J., Herzog, E.D., Petzold, L.R.: Functional network inference of the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. 113(16), 4512–4517 (2016)

    Google Scholar 

  24. Zino, L., Barzel, B., Rizzo, A.: Network Science and Automation, chapter 11.5, pp. 1–39. Springer, Berlin (2021)

    Google Scholar 

  25. Edery, I.: Circadian rhythms in a nutshell. Physiol. Genomics 3(2), 59–74 (2000)

    Google Scholar 

  26. Reppert, S.M., Weaver, D.R.: Coordination of circadian timing in mammals. Nature 418(6901), 935–941 (2002)

    Google Scholar 

  27. Herzog, E.D., Aton, S.J., Numano, R., Sakaki, Y., Tei, H.: Temporal precision in the mammalian circadian system: a reliable clock from less reliable neurons. J. Biol. Rhythm. 19(1), 35–46 (2004)

    Google Scholar 

  28. Dunlap, J.C., Loros, J.J., DeCoursey, P.J.: Chronobiology: Biological Timekeeping. Sinauer Associates, Sunderland (2004). OCLC: 51764526

    Google Scholar 

  29. Leloup, J.C., Goldbeter, A.: A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. J. Biol. Rhythm. 13(1), 70–87 (1998)

    Google Scholar 

  30. Bagheri, N., Lawson, M.J., Stelling, J., Doyle, F.J.: Modeling the drosophila melanogaster circadian oscillator via phase optimization. J. Biol. Rhythm. 23(6), 525–537 (2008). PMID: 19060261

    Google Scholar 

  31. Gunawan, R., Doyle III, F.J.: Phase sensitivity analysis of circadian rhythm entrainment. J. Biol. Rhythm. 22(2), 180–194 (2007)

    Google Scholar 

  32. Taylor, S.R., Gunawan, R., Petzold, L.R., Doyle III, F.J.: Sensitivity measures for oscillating systems: application to mammalian circadian gene network. IEEE Trans. Autom. Control 53, 177–188 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Hannay, K.M., Booth, V., Forger, D.B.: Macroscopic models for human circadian rhythms. J. Biol. Rhythm. 34(6), 658–671 (2019). PMID: 31617438

    Google Scholar 

  34. Serkh, K., Forger, D.B.: Optimal schedules of light exposure for rapidly correcting circadian misalignment. PLOS Comput. Biol. 10(4), 1–14 (2014)

    Google Scholar 

  35. St. John, P.C., Taylor, S.R., Abel, J.H., Doyle, F.J.: Amplitude metrics for cellular circadian bioluminescence reporters. Biophys. J. 107(11), 2712–2722 (2014)

    Google Scholar 

  36. Brown, L.S., Doyle III, F.J.: A dual-feedback loop model of the mammalian circadian clock for multi-input control of circadian phase. PLOS Comput. Biol. 16(11), 1–25 (2020)

    Google Scholar 

  37. Lippincott Williams & Wilkins (ed.): Diabetes Mellitus: A Guide to Patient Care. Lippincott Williams & Wilkins, Philadelphia (2007). OCLC: ocm68705615

    Google Scholar 

  38. Sedaghat, A.R., Sherman, A., Quon, M.J.: A mathematical model of metabolic insulin signaling pathways. Am. J. Physiol. Endocrinol. Metab. 283(5), E1084–E1101 (2002)

    Google Scholar 

  39. Nyman, E., Cedersund, G., Strålfors, P.: Insulin signaling – mathematical modeling comes of age. Trends Endocrinol. Metab. 23(3), 107–115 (2012)

    Google Scholar 

  40. Di Camillo, B., Carlon, A., Eduati, F., Toffolo, G.M.: A rule-based model of insulin signalling pathway. BMC Syst. Biol. 10(1), 38 (2016)

    Google Scholar 

  41. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010). OCLC: ocn456837194

    Google Scholar 

  42. Smolen, P., Baxter, D.A., Byrne, J.H.: Mathematical modeling of gene networks. Neuron 26(3), 567–580 (2000)

    Google Scholar 

  43. Avendaño, M.S., Leidy, C., Pedraza, J.M.: Tuning the range and stability of multiple phenotypic states with coupled positive–negative feedback loops. Nat. Commun. 4(1), 2605 (2013)

    Google Scholar 

  44. Ananthasubramaniam, B., Herzel, H.: Positive feedback promotes oscillations in negative feedback loops. PLoS One 9(8), e104761 (2014)

    Google Scholar 

  45. Schmickl, T., Karsai, I.: Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115(52), 13180–13185 (2018)

    Google Scholar 

  46. Ali, M.H., Imperiali, B.: Protein oligomerization: how and why. Bioorg. Med. Chem. 13(17), 5013–5020 (2005)

    Google Scholar 

  47. Hashimoto, K., Panchenko, A.R.: Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. Proc. Natl. Acad. Sci. 107(47), 20352–20357 (2010)

    Google Scholar 

  48. National Research Council, Division on Engineering and Physical Sciences, Board on Army Science Technology, and Committee on Network Science for Future Army Applications: Network Science. National Academies Press, Washington (2006)

    Google Scholar 

  49. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nat. Genet. 31(1), 64–68 (2002)

    Google Scholar 

  50. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., Young, R.A.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science 298(5594), 799–804 (2002)

    Google Scholar 

  51. Barkai, N., Leibler, S.: Biological rhythms – circadian clocks limited by noise. Nature 403(6767), 267–268 (2000)

    Google Scholar 

  52. Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol. 334(2), 197–204 (2003)

    Google Scholar 

  53. Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H.: (eds.) Encyclopedia of Systems Biology. Springer Reference, New York (2013). OCLC: ocn821700038

    Google Scholar 

  54. Ali, M.Z., Parisutham, V., Choubey, S., Brewster, R.C.: Inherent regulatory asymmetry emanating from network architecture in a prevalent autoregulatory motif. eLife 9, e56517 (2020)

    Google Scholar 

  55. Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N.J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106(6), 697–708 (2001)

    Google Scholar 

  56. Ideker, T.E., Thorssont, V., Karp, R.M.: Discovery of regulatory interactions through perturbation: inference and experimental design. In: Biocomputing 2000, pp. 305–316. World Scientific, Singapore (1999)

    Google Scholar 

  57. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)

    Google Scholar 

  58. Dilão, R.: The regulation of gene expression in eukaryotes: Bistability and oscillations in repressilator models. J. Theor. Biol. 340, 199–208 (2014)

    MathSciNet  MATH  Google Scholar 

  59. Mani, S., Thattai, M.: Stacking the odds for Golgi cisternal maturation. eLife 5, e16231 (2016)

    Google Scholar 

  60. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17 Suppl 1, S215–24 (2001)

    Google Scholar 

  61. Kyoda, K., Baba, K., Onami, S., Kitano, H.: DBRF-MEGN method: an algorithm for deducing minimum equivalent gene networks from large-scale gene expression profiles of gene deletion mutants. Bioinformatics 20(16), 2662–2675 (2004)

    Google Scholar 

  62. Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Nakagawa, N., Yokoyama, S., Kuramitsu, S., Konagaya, A.: Inference of s-system models of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics 21(7), 1154–1163 (2005)

    Google Scholar 

  63. Prill, R.J., Iglesias, P.A., Levchenko, A.: Dynamic properties of network motifs contribute to biological network organization. Plos Biol. 3(11), 1881–1892 (2005)

    Google Scholar 

  64. Finkle, J.D., Bagheri, N.: Hybrid analysis of gene dynamics predicts context-specific expression and offers regulatory insights. Bioinformatics 35(22), 4671–4678 (2019)

    Google Scholar 

  65. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)

    Google Scholar 

  66. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8(11), 1195–1203 (2006)

    Google Scholar 

  67. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274(42), 30169–30181 (1999)

    Google Scholar 

  68. Gilman, A., Arkin, A.P.: Genetic “code”: representations and dynamical models of genetic components and networks. Annu. Rev. Genomics Hum. Genet. 3, 341–369 (2002)

    Google Scholar 

  69. Csete, M., Doyle, J.: Bow ties, metabolism and disease. Trends Biotechnol. 22(9), 446–450 (2004)

    Google Scholar 

  70. Ma, L., Iglesias, P.A.: Quantifying robustness of biochemical network models. BMC Bioinform. 3 (2002)

    Google Scholar 

  71. Ueda, H.R., Hagiwara, M., Kitano, H.: Robust oscillations within the interlocked feedback model of drosophila circadian rhythm. J. Theor. Biol. 210(4), 401–406 (2001)

    Google Scholar 

  72. Wilkinson, D.J.: Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 10(2), 122–133 (2009)

    Google Scholar 

  73. El Samad, H., Khammash, M., Petzold, L., Gillespie, D.: Stochastic modelling of gene regulatory networks. Int. J. Robust Nonlinear Control 15(15), 691–711 (2005)

    MathSciNet  MATH  Google Scholar 

  74. Gillespie, D.T.: General method for numerically simulating stochastic time evolution of coupled chemical-reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    MathSciNet  Google Scholar 

  75. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)

    MATH  Google Scholar 

  76. Gillespie, C.S.: Moment-closure approximations for mass-action models. IET Syst. Biol. 3(1), 52–58 (2009)

    MathSciNet  Google Scholar 

  77. Neuert, G., Munsky, B., Tan, R.Z., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339(6119), 584–587 (2013)

    Google Scholar 

  78. Clarke, B.L.: Stoichiometric network analysis. Cell Biophys. 12, 237–253 (1988)

    Google Scholar 

  79. Lander, A.D.: A calculus of purpose. PLoS Biol. 2(6), 712–714 (2004)

    Google Scholar 

  80. Julius, A.A., Imielinski, M., Pappas, G.J.: Metabolic networks analysis using convex optimization. In: 2008 47th IEEE Conference on Decision and Control, pp. 762–767 (2008). ISSN: 0191-2216

    Google Scholar 

  81. Mirsky, H., Stelling, J., Gunawan, R., Bagheri, N., Taylor, S.R., Kwei, E., Shoemaker, J.E., Doyle III, F.J.: Automatic Control in Systems Biology, pp. 1335–1360. Springer, Berlin (2009)

    Google Scholar 

  82. Yasemi, M., Jolicoeur, M.: Modelling cell metabolism: a review on constraint-based steady-state and kinetic approaches. Processes 9(2) (2021)

    Google Scholar 

  83. Varma, A., Palsson, B.O.: Metabolic flux balancing – basic concepts, scientific and practical use. Bio-Technology 12(10), 994–998 (1994)

    Google Scholar 

  84. Sánchez, C.E.G., Sáez, R.G.T.: Comparison and analysis of objective functions in flux balance analysis. Biotechnol. Prog. 30(5), 985–991 (2014)

    Google Scholar 

  85. Moreno-Sánchez, R., Saavedra, E., Rodríguez-Enríquez, S., Olín-Sandoval, V.: Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J. Biomed. Biotechnol. 2008 (2008)

    Google Scholar 

  86. Zhang, C., Hua, Q.: Applications of genome-scale metabolic models in biotechnology and systems medicine. Front. Physiol. 6, 413 (2016)

    Google Scholar 

  87. Barua, D., Kim, J., Reed, J.L.: An automated phenotype-driven approach (geneforce) for refining metabolic and regulatory models. PLOS Comput. Biol. 6(10), 1–15 (2010)

    Google Scholar 

  88. Pratapa, A., Balachandran, S., Raman, K.: Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics 31(20), 3299–3305 (2015)

    Google Scholar 

  89. Raman, K., Yeturu, K., Chandra, N.: targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst. Biol. 2(1), 109 (2008)

    Google Scholar 

  90. Kompala, D.S., Ramkrishna, D., Jansen, N.B., Tsao, G.T.: Investigation of bacterial-growth on mixed substrates – experimental evaluation of cybernetic models. Biotechnol. Bioeng. 28(7), 1044–1055 (1986)

    Google Scholar 

  91. Varner, J., Ramkrishna, D.: Application of cybernetic models to metabolic engineering: investigation of storage pathways. Biotechnol. Bioeng. 58(2–3), 282–291 (1998)

    Google Scholar 

  92. Reimers, A.-M., Knoop, H., Bockmayr, A., Steuer, R.: Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth. Proc. Natl. Acad. Sci. 114(31), E6457–E6465 (2017)

    Google Scholar 

  93. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U. S. A. 99(23), 15112–15117 (2002)

    Google Scholar 

  94. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S., Gilles, E.D.: Metabolic network structure determines key aspects of functionality and regulation. Nature 420(6912), 190–193 (2002)

    Google Scholar 

  95. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)

    Google Scholar 

  96. El-Samad, H., Kurata, H., Doyle, J.C., Gross, C.A., Khammash, M.: Surviving heat shock: control strategies for robustness and performance. Proc. Natl. Acad. Sci. U. S. A. 102(8), 2736–2741 (2005)

    Google Scholar 

  97. Hutchison, C.A., Chuang, R.-Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., Pelletier, J.F., Qi, Z.-Q., Richter, R.A., Strychalski, E.A., Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K.S., Smith, H.O., Glass, J.I., Merryman, C., Gibson, D.G., Venter, J.C.: Design and synthesis of a minimal bacterial genome. Science 351(6280) (2016)

    Google Scholar 

  98. Buenrostro, J., Wu, B., Chang, H., Greenleaf, W.: ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 109, 21.29.1–21.29.9 (2015)

    Google Scholar 

  99. Eberwine, J., Sul, J.-Y., Bartfai, T., Kim, J.: The promise of single-cell sequencing. Nat. Methods 11(1), 25–27 (2014)

    Google Scholar 

  100. Fan, A., Wang, H., Xiang, H., Zou, X.: Inferring large-scale gene regulatory networks using a randomized algorithm based on singular value decomposition. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(6), 1997–2008 (2019)

    Google Scholar 

  101. D’Haeseleer, P., Liang, S.D., Somogyi, R.: Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16(8), 707–726 (2000)

    Google Scholar 

  102. Haury, A.-C., Mordelet, F., Vera-Licona, P., Vert, J.-P.: TIGRESS: trustful inference of gene REgulation using stability selection. BMC Syst. Biol. 6(1), 145 (2012)

    Google Scholar 

  103. Ciaccio, M.F., Chen, V.C., Jones, R.B., Bagheri, N.: The DIONESUS algorithm provides scalable and accurate reconstruction of dynamic phosphoproteomic networks to reveal new drug targets. Integr. Biol. Quant. Biosci. Nano Macro 7(7), 776–791 (2015)

    Google Scholar 

  104. Villaverde, A.F., Ross, J., Morán, F., Banga, J.R.: Mider: network inference with mutual information distance and entropy reduction. PLoS One 9(5), 1–15 (2014)

    Google Scholar 

  105. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R.D., Califano, A.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf. 7(1), S7 (2006)

    Google Scholar 

  106. Friedman, N.: Inferring cellular networks using probabilistic graphical models. Science 303(5659), 799–805 (2004)

    Google Scholar 

  107. Finkle, J.D., Wu, J.J., Bagheri, N.: Windowed granger causal inference strategy improves discovery of gene regulatory networks. Proc. Natl. Acad. Sci. 115(9), 2252–2257 (2018)

    Google Scholar 

  108. Qiu, X., Rahimzamani, A., Wang, L., Ren, B., Mao, Q., Durham, T., McFaline-Figueroa, J.L., Saunders, L., Trapnell, C., Kannan, S.: Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst. 10(3), 265 – 274.e11 (2020)

    Google Scholar 

  109. Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin, S., Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K., Jaenisch, R., Regev, A., Lander, E.S.: Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell 176(4), 928 – 943.e22 (2019)

    Google Scholar 

  110. Muldoon, J.J., Yu, J.S., Fassia, M.-K., Bagheri, N.: Network inference performance complexity: a consequence of topological, experimental and algorithmic determinants. Bioinformatics 35(18), 3421–3432 (2019)

    Google Scholar 

  111. Guet, C.C., Elowitz, M.B., Hsing, W.H., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296(5572), 1466–1470 (2002)

    Google Scholar 

  112. Tegner, J., Yeung, M.K.S., Hasty, J., Collins, J.J.: Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. U. S. A. 100(10), 5944–5949 (2003)

    Google Scholar 

  113. Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629), 102–105 (2003)

    Google Scholar 

  114. Bansal, M., Gatta, G.D., di Bernardo, D.: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22(7), 815–822 (2006)

    Google Scholar 

  115. Kholodenko, B.N., Kiyatkin, A., Bruggeman, F.J., Sontag, E., Westerhoff, H.V., Hoek, J.B.: Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl. Acad. Sci. U. S. A. 99(20), 12841–12846 (2002)

    Google Scholar 

  116. Sontag, E., Kiyatkin, A., Kholodenko, B.N.: Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20(12), 1877–1886 (2004)

    Google Scholar 

  117. Maria, G.: A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chem. Biochem. Eng. Q. 18(3), 195–222 (2004)

    Google Scholar 

  118. Lillacci, G., Khammash, M.: Parameter estimation and model selection in computational biology. PLOS Comput. Biol. 6(3), 1–17 (2010)

    MathSciNet  MATH  Google Scholar 

  119. Rodriguez-Fernandez, M., Mendes, P., Banga, J.R.: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. Biosystems 83(2–3), 248–265 (2006)

    Google Scholar 

  120. Lockhart, D.J., Winzeler, E.A.: Genomics, gene expression and DNA arrays. Nature 405(6788), 827–836 (2000)

    Google Scholar 

  121. Selinger, D.W., Wright, M.A., Church, G.M.: On the complete determination of biological systems. Trends Biotechnol. 21(6), 251–254 (2003)

    Google Scholar 

  122. MacCarthy, T., Pomiankowski, A., Seymour, R.: Using large-scale perturbations in gene network reconstruction. BMC Bioinf. 6 (2005)

    Google Scholar 

  123. Wagner, A.: Reconstructing pathways in large genetic networks from genetic perturbations. J. Comput. Biol. 11(1), 53–60 (2004)

    Google Scholar 

  124. Gunawan, R., Doyle III, F.J.: Isochron-based phase response analysis of circadian rhythms. Biophys. J. 91(6), 2131–2141 (2006)

    Google Scholar 

  125. Zak, D.E., Stelling, J., Doyle, F.J.: Sensitivity analysis of oscillatory (bio)chemical systems. Comput. Chem. Eng. 29(3), 663–673 (2005)

    Google Scholar 

  126. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001). The Second IMACS Seminar on Monte Carlo Methods

    Google Scholar 

  127. Sumner, T., Shephard, E., Bogle, I.D.L.: A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling. J. R. Soc. Interface 9(74), 2156–2166 (2012)

    Google Scholar 

  128. Babtie, A.C., Kirk, P., Stumpf, M.P.H.: Topological sensitivity analysis for systems biology. Proc. Natl. Acad. Sci. 111(52), 18507–18512 (2014)

    MathSciNet  MATH  Google Scholar 

  129. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLOS Comput. Biol. 3(10), e189 (2007)

    MathSciNet  Google Scholar 

  130. Erguler, K., Stumpf, M.P.H.: Practical limits for reverse engineering of dynamical systems: a statistical analysis of sensitivity and parameter inferability in systems biology models. Mol. BioSyst. 7(5), 1593–1602 (2011)

    Google Scholar 

  131. Doyle, F.J., Huyett, L.M., Lee, J.B., Zisser, H.C., Dassau, E.: Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37(5), 1191–1197 (2014)

    Google Scholar 

  132. Harvey, R.A., Dassau, E., Zisser, H., Seborg, D.E., Jovanovič, L., Doyle III, F.J.: Design of the health monitoring system for the artificial pancreas: low glucose prediction module. J. Diabetes Sci. Technol. 6(6), 1345–1354 (2012). PMID: 23294779

    Google Scholar 

  133. Shi, D., Dassau, E., Doyle, F.J.: A multivariate bayesian optimization framework for long-term controller adaptation in artificial pancreas. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 276–283 (2018)

    Google Scholar 

  134. Ortmann, L., Shi, D., Dassau, E., Doyle, F.J., Misgeld, B.J.E., Leonhardt, S.: Automated insulin delivery for type 1 diabetes mellitus patients using gaussian process-based model predictive control. In: 2019 American Control Conference (ACC), pp. 4118–4123 (2019)

    Google Scholar 

  135. Brown, S.A., Kovatchev, B.P., Raghinaru, D., Lum, J.W., Buckingham, B.A., Kudva, Y.C., Laffel, L.M., Levy, C.J., Pinsker, J.E., Wadwa, R.P., Dassau, E., Doyle, F.J., Anderson, S.M., Church, M.M., Dadlani, V., Ekhlaspour, L., Forlenza, G.P., Isganaitis, E., Lam, D.W., Kollman, C., Beck, R.W.: Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl. J. Med. 381(18), 1707–1717 (2019)

    Google Scholar 

  136. Huyett, L.M., Dassau, E., Zisser, H.C., Doyle, F.J.: Glucose sensor dynamics and the artificial pancreas: the impact of lag on sensor measurement and controller performance. IEEE Control. Syst. Mag. 38(1), 30–46 (2018)

    MathSciNet  Google Scholar 

  137. Briat, C., Gupta, A., Khammash, M.: Antithetic integral feedback ensures robust perfect adaptation in noisy biomolecular networks. Cell Syst. 2(1), 15–26 (2016)

    Google Scholar 

  138. Briat, C., Gupta, A., Khammash, M.: Antithetic proportional-integral feedback for reduced variance and improved control performance of stochastic reaction networks. J. R. Soc. Interface 15(143), 20180079 (2018)

    Google Scholar 

  139. Polstein, L.R., Gersbach, C.A.: Light-inducible gene regulation with engineered zinc finger proteins. Methods Mol. Biol. 1148, 89–107 (2014)

    Google Scholar 

  140. Shimizu-Sato, S., Huq, E., Tepperman, J.M., Quail, P.H.: A light-switchable gene promoter system. Nat. Biotechnol. 20(10), 1041–1044 (2002)

    Google Scholar 

  141. Milias-Argeitis, A., Rullan, M., Aoki, S.K., Buchmann, P., Khammash, M.: Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth. Nat. Commun. 7(1), 12546 (2016)

    Google Scholar 

  142. Harrigan, P., Madhani, H.D., El-Samad, H.: Real-time genetic compensation defines the dynamic demands of feedback control. Cell 175(3), 877–886.e10 (2018)

    Google Scholar 

  143. Baumschlager, A., Rullan, M., Khammash, M.: Exploiting natural chemical photosensitivity of anhydrotetracycline and tetracycline for dynamic and setpoint chemo-optogenetic control. Nat. Commun. 11(1), 3834 (2020)

    Google Scholar 

  144. Yu, J.S., Bagheri, N.: Agent-based models predict emergent behavior of heterogeneous cell populations in dynamic microenvironments. Front. Bioeng. Biotechnol. 8 (2020)

    Google Scholar 

  145. Mikelson, J., Khammash, M.: Likelihood-free nested sampling for parameter inference of biochemical reaction networks. PLOS Comput. Biol. 16(10), 1–24 (2020)

    Google Scholar 

  146. Yazdani, A., Lu, L., Raissi, M., Karniadakis, G.E.: Systems biology informed deep learning for inferring parameters and hidden dynamics. PLOS Comput. Biol. 16(11), e1007575 (2020)

    Google Scholar 

  147. Porubsky, V.L., Goldberg, A.P., Rampadarath, A.K., Nickerson, D.P., Karr, J.R., Sauro, H.M.: Best practices for making reproducible biochemical models. Cell Syst. 11(2), 109–120 (2020)

    Google Scholar 

  148. An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1(2), 159–171 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Jessica S. Yu for support in developing Figs. 55.1, 55.2, and 55.3. The authors would also like to acknowledge McCormick School of Engineering at Northwestern University and the Washington Research Foundation at University of Washington for their financial support. The authors also acknowledge contributions from Mirksy et al. [81], which provide historical context and rigorous review of core subject matter that comprise the foundation of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narasimhan Balakrishnan or Neda Bagheri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishnan, N., Bagheri, N. (2023). Automatic Control in Systems Biology. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_55

Download citation

Publish with us

Policies and ethics