Skip to main content

Teleoperation and Level of Automation

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

  • 4530 Accesses

Abstract

This chapter presents an overview of the teleoperation of robotics systems, starting with a historical background and positioning these systems in a scale of levels of automation. Next, as a representative example, an up-to-date specific bilateral teleoperation scheme is described in order to illustrate the typical components and functional modules of this kind of systems. As a natural extension of the bilateral teleoperators, the cooperative teleoperation systems are introduced. Some specific topics in the field are particularly discussed, for instance, the control objectives and algorithms for both bilateral teleoperators and cooperative teleoperation systems, the communication channels, the use of graphical simulation and task planning, and the usefulness of virtual and augmented reality. The last part of the chapter includes a description of the most typical application fields, such as industry and construction, agriculture, mining, underwater, space, healthcare and surgery, assistance, humanitarian demining, and education, where some of the pioneering, significant, and latest contributions are briefly presented. Finally, some conclusions and the trends in the field close the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automatica 42(12), 2035–2057 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Mihelj, M., Podobnik, J.: Haptics for virtual reality and teleoperation. In: Intelligent Systems, Control and Automation: Science and Engineering, vol. 64. Springer, Berlin (2012)

    Google Scholar 

  3. Bicker, R., Burn, K., Hu, Z., Pongaen, W., Bashir, A.: The early development of remote tele-manipulation systems. In: Ceccarelli, M. (ed.) International Symposium on History of Machines and Mechanisms, pp. 391–404 (2004)

    Google Scholar 

  4. Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. The MIT Press, Cambridge (1992)

    Google Scholar 

  5. Milgram, P., Rastogi, A., Grodski, J.J.: Telerobotic control using augmented reality. In: Proceedings 4th IEEE International Workshop on Robot and Human Communication, Tokyo, pp. 21–29 (1995)

    Google Scholar 

  6. Fitts, P.M.(ed.) Human Engineering for an Effective Air-Navigation and Traffic-Control System. National Research Council, Washington (1951)

    Google Scholar 

  7. Save, L., Feuerberg, B.: Designing human-automation interaction: a new level of Automation Taxonomy. In: Human Factors: A View from an Integrative Perspective, Toulouse, pp. 43–55 (2012)

    Google Scholar 

  8. Sheridan, T.B., Verplank, W.L.: Human and Computer Control of Undersea Teleoperators. MIT Man-Machine Systems Laboratory, Cambridge (1978)

    Google Scholar 

  9. Endsley, M.R., Kaber, D.B.: Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics 42(3), 462–492 (1999)

    Google Scholar 

  10. Endsley, M.R.: Level of automation forms a key aspect of autonomy design. J. Cognitive Engineering and Decision Making 12(1), 29–34 (2018)

    Google Scholar 

  11. Kaber, D.B.: Issues in human-automation interaction modeling: presumptive aspects of frameworks of types and levels of automation. J. Cognitive Engineering and Decision Making 12(1), 7–24 (2018)

    Google Scholar 

  12. Beer, J.M., Fisk, A.D., Rogers, W.A.: Toward a framework for levels of robot autonomy in human-robot interaction. Journal of Human-Robot Interaction 3(2), 74–99 (2014)

    Google Scholar 

  13. Murphy, R.R. Introduction to AI Robotics, 2nd ed. The MIT Press, Cambridge (2019)

    Google Scholar 

  14. Nuño, E., Rodríguez, A., Basañez, L.: Force reflecting teleoperation via ipv6 protocol with geometric constraints haptic guidance. In: Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 445–458. Springer, Berlin (2007)

    Google Scholar 

  15. Basañez, L., Rosell, J., Palomo-Avellaneda, L., Nuño, E., Portilla, H.: A framework for robotized teleoperated tasks. In: Proceedings Robot 2011, pp. 573–580 (2011)

    Google Scholar 

  16. Sirouspour, S.: Modeling and control of cooperative teleoperation systems. IEEE Trans. Robot. 21(6), 1220–1225 (2005)

    Google Scholar 

  17. Aldana, C., Nuño, E., Basañez, L.: Bilateral teleoperation of cooperative manipulators. In: IEEE International Conference on Robotics and Automation, pp. 4274–4279 (2012)

    Google Scholar 

  18. Pliego-Jiménez, J., Arteaga-Pérez, M.A., Cruz-Hernández, C.: Dexterous remote manipulation by means of a teleoperation system. Robotica 37(8), 1457–1476 (2019)

    Google Scholar 

  19. Lawrence, D.A.: Stability and transparency in bilateral teleoperation. IEEE Trans. Robot. Autom. 9(5), 624–637 (1993)

    Google Scholar 

  20. Mobasser, F., Hashtrudi-Zaad, K.: Transparent rate mode bilateral teleoperation control. Int. J. Robot. Res. 27(1), 57–72 (2008)

    Google Scholar 

  21. Anderson, R.J., Spong, M.W.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    MathSciNet  Google Scholar 

  22. Niemeyer, G., Slotine, J.J.E.: Stable adaptive teleoperation. IEEE J. Ocean. Eng. 16(1), 152–162 (1991)

    Google Scholar 

  23. Nuño, E., Ortega, R., Barabanov, N., Basañez, L.: A globally stable PD controller for bilateral teleoperators. IEEE Trans. Robot. 24(3), 753–758 (2008)

    Google Scholar 

  24. Nuño, E., Basañez, L., Ortega, R., Spong, M.W.: Position tracking for nonlinear teleoperators with variable time-delay. Int. J. Robot. Res. 28(7), 895–910 (2009)

    Google Scholar 

  25. Secchi, C., Stramigioli, S., Fantuzzi, C.: Transparency in port-hamiltonian-based telemanipulation. IEEE Trans. Robot. 24(4), 903–910 (2008)

    MATH  Google Scholar 

  26. Nuño, E., Basañez, L., Ortega, R.: Passivity-based control for bilateral teleoperation: a tutorial. Automatica 47(3), 485–495 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Chopra, N., Spong, M.W., Ortega, R., Barbanov, N.: On tracking performance in bilateral teleoperation. IEEE Trans. Robot. 22(4), 844–847 (2006)

    Google Scholar 

  28. Nuño, E., Ortega, R., Basañez, L.: An Adaptive Controller for Nonlinear Teleoperators. Automatica 46(1), 155–159 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Sarras, I., Nuño, E., Basañez, L.: An adaptive controller for nonlinear teleoperators with variable time-delays. J. Frankl. Inst. 351(10), 4817–4837 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Li, Y., Yin, Y., Zhang, S., Dong, J., Johansson, R.: Composite adaptive control for bilateral teleoperation systems without persistency of excitation. J. Frankl. Inst. 357(2), 773–795 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Zhang, H., Song, A., Li, H., Shen, S.: Novel adaptive finite-time control of teleoperation system with time-varying delays and input saturation. IEEE Trans. Cybern. 51(7), 1–14 (2019)

    Google Scholar 

  32. Arteaga, M., Kelly, R.: Robot control without velocity measurements: new theory and experimental results. IEEE Trans. Robot. Autom. 20(2), 297–308 (2004)

    Google Scholar 

  33. Garcia-Valdovinos, L., Parra-Vega, V., Arteaga, M.: Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay. Robot. Auton. Syst. 55(8), 609–617 (2007)

    Google Scholar 

  34. Polushin, I.G., Tayebi, A., Marquez, H.J.: Control schemes for stable teleoperation with communication delay based on IOS small gain theorem. Automatica 42(6), 905–915 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Hua, C.C., Liu, X.P.: Teleoperation over the internet with/without velocity signal. IEEE Trans. Instrum. Meas. 60(1), 4–13 (2011)

    MathSciNet  Google Scholar 

  36. Nuño, E., Basañez, L., López-Franco, C., Arana-Daniel, N.: Stability of nonlinear teleoperators using PD controllers without velocity measurements. J. Frankl. Inst. 351(1), 241–258 (2014)

    MATH  Google Scholar 

  37. Sarras, I., Nuño, E., Basañez, L., Kinnaert, M.: Position tracking in delayed bilateral teleoperators without velocity measurements. Int. J. Robust Nonlinear Control 26(7), 1437–1455 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Nuño, E., Arteaga-Pérez, M., Espinosa-Pérez, G.: Control of bilateral teleoperators with time delays using only position measurements. Int. J. Robust Nonlinear Control 28(3), 808–824 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Arteaga-Pérez, M.A., Morales, M., López, M., Nuño, E.: Observer design for the synchronization of bilateral delayed teleoperators. Eur. J. Control. 43(9), 20–32 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Astolfi, A., Ortega, R., Venkatraman, A.: A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica 46(1), 182–189 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Aldana, C., Nuño, E., Basañez, L.: Control of bilateral teleoperators in the operational space without velocity measurements. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5445–5450 (2013)

    Google Scholar 

  42. Lee, D., Spong, M.W.: Bilateral teleoperation of multiple cooperative robots over delayed communication networks: Theory. In: IEEE International Conference on Robotics and Automation, pp. 360–365 (2005)

    Google Scholar 

  43. Rodriguez-Seda, E.J., Troy, J.J., Erignac, C.A., Murray, P., Stipanovic, D.M., Spong, M.W.: Bilateral teleoperation of multiple mobile agents: coordinated motion and collision avoidance. IEEE Trans. Control Syst. Technol. 18(4), 984–992 (2010)

    Google Scholar 

  44. Malysz, P., Sirouspour, S.: A kinematic control framework for single-slave asymmetric teleoperation systems. IEEE Trans. Robot. 27(5), 901–917 (2011)

    Google Scholar 

  45. Polushin, I.G., Dashkovskiy, S.N., Takhmar, A., Patel, R.V.: A small gain framework for networked cooperative force-reflecting teleoperation. Automatica 49(2), 338–348 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Li, J., Tavakoli, M., Huang, Q.: Stability of cooperative teleoperation using haptic devices with complementary degrees of freedom. IET Control Theory Appl. 8(12), 1062–1070 (2014)

    Google Scholar 

  47. Yang, Y., Hua, C., Guan, X.: Multi-manipulators coordination for bilateral teleoperation system using fixed-time control approach. Int. J. Robust Nonlinear Control 28(18), 5667–5687 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Nuño, E., Ortega, R., Basañez, L., Hill, D.: Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays. IEEE Trans. Autom. Control 56(4), 935–941 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Nuño, E., Sarras, I., Basañez, L.: Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers. IEEE Trans. Robot. 29(6), 1503–1508 (2013)

    Google Scholar 

  50. Aldana, C.I., Nuño, E., Basañez, L., Romero, E.: Operational space consensus of multiple heterogeneous robots without velocity measurements. J. Frankl. Inst. 351(3), 1517–1539 (2014)

    MATH  Google Scholar 

  51. Montaño, A., Suárez, R., Aldana, C.I., Nuño, E.: Bilateral telemanipulation of unknown objects using remote dexterous in-hand manipulation strategies. In: Proceedings of the 2020 IFAC World Congress. Berlin, Germany (2020)

    Google Scholar 

  52. Nuño, E., Ortega, R.: Achieving consensus of Euler-Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control. IEEE Trans. Control Syst. Technol. 26(1), 222–232 (2018)

    Google Scholar 

  53. Rodriguez-Seda, E.J., Lee, D., Spong, M.W.: Experimental comparison study of control architectures for Bilateral teleoperators. IEEE Trans. Robot. 25(6), 1304–1318 (2009)

    Google Scholar 

  54. Lee, J.-Y., Payandeh, S.: Haptic Teleoperation Systems: Signal Processing Perspective. Springer, Switzerland (2015)

    Google Scholar 

  55. Loshin, P.: IPv6: Theory, Protocol, and Practice, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  56. Everything you need to know about 5G. https://www.qualcomm.com/invention/5g/what-is-5g. Accessed: 2020-06-02

  57. ITU-R. IMT Vision—Framework and overall objectives of the future development of IMT for 2020 and beyond. In: M Series, Recommendation ITU-R M.2083-0 (2015)

    Google Scholar 

  58. Minopoulos, G., Kokkonis, G., Psannis, K.E., Ishibashi, Y.: A survey on haptic data over 5G networks. Int. J. Future Gener. Commun. Networking 12(2), 37–54 (2019)

    Google Scholar 

  59. Antonakoglou, K., Xu, X., Steinbach, E., Mahmoodi, T., Dohler, M.: Toward Haptic communications over the 5G Tactile Internet. IEEE Commun. Surv. Tutorials 20(4), 3034–3059 (2018)

    Google Scholar 

  60. Doosan First To Use 5G for Worldwide TeleOperation. https:// eu.doosanequipment.com/en/news/2019-28-03-doosan-to-use-5g. Accessed: 2020-06-02

  61. Remote surgery using robots advances with 5G tests in China. https://www.therobotreport.com/remote-surgery-via-robots-adva nces-china-5g-tests/. Accessed: 2020-06-02

  62. Koziol, M.: Terahertz Waves Could Push 5G to 6G. In: IEEE Spectrum (2019)

    Google Scholar 

  63. Endsley, M.R.: Direct measurement of situation awareness: validity and use of SAGAT. Situation Awareness: Analysis and Measurement 10, 147–174 (2000)

    Google Scholar 

  64. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors 37(1), 32–64 (1995)

    Google Scholar 

  65. de Barros, P.G., Lindeman, R.W., Ward, M.O.: Enhancing robot teleoperator situation awareness and performance using vibro-tactile and graphical feedback. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 47–54 (2011)

    Google Scholar 

  66. Sherman, W., Craig, A.: Understanding Virtual Reality: Interface, Application, and Design. Morgan Kaufmann Publishers Inc., Burlington (2002)

    Google Scholar 

  67. Stotko, P., Krumpen, S., Schwarz, M., Lenz, C., Behnke, S., Klein, R., Weinmann, M.: A VR system for immersive teleoperation and live exploration with a mobile robot. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3630–3637 (2019)

    Google Scholar 

  68. Inami, M., Kawakami, N., Tachi, S.: Optical camouflage using retro-reflective projection technology. In: Proceedings International Symposium Mixed and Augmented Reality, pp. 348–349 (2003)

    Google Scholar 

  69. Azuma, R.T.: The most important challenge facing augmented reality. Presence Teleop. Virt. Environments 25(3), 234–238 (2017)

    Google Scholar 

  70. Portilla, H., Basañez, L.: Augmented reality tools for enhanced robotics teleoperation systems. In: Proceedings 3DTV Conference, pp. 1–4 (2007)

    Google Scholar 

  71. Rastogi, A., Milgram, P., Drascic, D.: Telerobotic control with stereoscopic augmented reality. In: Proceedings of SPIE—The International Society for Optical Engineering, pp. 115–122 (1996)

    Google Scholar 

  72. Kron, A., Schmidt, G., Petzold, B., Zah, M.I., Hinterseer, P., Steinbach, E.: Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In: Proceedings of the IEEE International Conference on Robotics and Automation, 2004 (ICRA ’04), vol. 2, pp. 1968–1973 (2004)

    Google Scholar 

  73. Ansar, A., Rodrigues, D., Desai, J.P., Daniilidis, K., Kumar, V., Campos, M.F.M.: Visual and haptic collaborative tele-presence. Comput. Graph. 25(5), 789–798 (2001)

    Google Scholar 

  74. DeJong, B.P., Faulring, E.L., Colgate, J.E., Peshkin, M.A., Kang, H., Park, Y.S., Ewing, T.F.: Lessons learned from a novel teleoperation testbed. Ind. Robot. Int. J. 33(3), 187–193 (2006)

    Google Scholar 

  75. Otmane, S., Mallem, M., Kheddar, A., Chavand, F.: Active virtual guides as an apparatus for augmented reality based telemanipulation system on the Internet. In: Proceedings of the 33rd Annual Simulation Symposium, Washington, pp. 185–191 (2000)

    Google Scholar 

  76. Gu, J., Augirre, E., Cohen, P.: An augmented-reality interface for telerobotic applications. In: Proceedings of the 6th IEEE Workshop on Applications of Computer Vision, Orlando, pp. 220–224 (2002)

    Google Scholar 

  77. Hoffmann, C., Joan-Arinyo, R.: A brief on constraint solving. Comput.-Aided Des. Applic. 2(5), 655–663 (2005)

    Google Scholar 

  78. Fudos, I., Hoffmann, C.: A graph-constructive approach to solving systems of geometric constraints. ACM Trans. Graph. 16(2), 179–216 (2004)

    Google Scholar 

  79. Kramer, G.A.: Solving Geometric Constraint Systems: A Case Study in Kinematics. The MIT Press, New York (2003)

    Google Scholar 

  80. Bruderlin, B.: Using geometric rewrite rules for solving geometric problems symbolically. Theor. Comput. Sci. 116, 291–303 (1993)

    MathSciNet  MATH  Google Scholar 

  81. Nelson, G.: Juno, a constraint-based graphics system. In: Proceedings of the 12st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, vol. 19, pp. 235–243 (1985)

    Google Scholar 

  82. Lamure, H., Michelucci, D.: Solving geometric constraints by homotopy. IEEE Trans. Vis. Comput. Graph. 2(1), 28–34 (1996)

    Google Scholar 

  83. Kondo, K.: Algebraic method for manipulation of dimensional relationships in geometric models. Comput. Aided Des. 24(3), 141–147 (1992)

    MATH  Google Scholar 

  84. Rodríguez, A., Basañez, L., Celaya, E.: A relational positioning methodology for Robot task specification and execution. IEEE Trans. Robot. 24(3), 600–611 (2008)

    Google Scholar 

  85. Rosell, J., Vázquez, I.: Haptic rendering of compliant motions using contact tracking in C-space. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 4223–4228 (2005)

    Google Scholar 

  86. Rosell, J., Vázquez, C., Pérez, A., Iñiguez, P.: Motion planning for haptic guidance. J. Intell. Robot. Syst. 53(3), 223–245 (2008)

    Google Scholar 

  87. Itkowitz, B., Handley, J., Zhu, W.: The OpenHaptics toolkit: a library for adding 3D Touch navigation and haptics to graphics applications. In First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 590–595 (2005)

    Google Scholar 

  88. Alaimo, S.M.C.: Novel Haptic Cueing for UAV Tele-Operation. PhD thesis, Università Di Pisa, Pisa (2011)

    Google Scholar 

  89. Perez-Grau, F.J., Ragel, R., Caballero, F., Viguria, A., Ollero, A.: Semi-autonomous teleoperation of UAVs in search and rescue scenarios. In: Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1066–1074 (2017)

    Google Scholar 

  90. Aleotti, J., Micconi, G., Caselli, S., Benassi, G., Zambelli, N., Bettelli, M., Calestani, D., Zappettini, A.: Haptic Teleoperation of UAV Equipped with Gamma-Ray Spectrometer for Detection and Identification of Radio-Active Materials in Industrial Plants, pp. 197–214. Springer, Cham (2019)

    Google Scholar 

  91. Zhang, D., Yang, G., Khurshid, R.P.: Haptic teleoperation of UAVs through control barrier functions. IEEE Trans. Haptic 13(1), 109–115 (2020)

    Google Scholar 

  92. Murphy, R.R.: Disaster Robotics. MIT Press, New York (2014)

    Google Scholar 

  93. Iborra, A., Pastor, J.A., Alvarez, B., Fernandez, C., Merono, J.M.F.: Robots in radioactive environments. IEEE Robot. Autom. Mag. 10(4), 12–22 (2003)

    Google Scholar 

  94. Book, W., Love, L.: Teleoperation, Telerobotics, and Telepresence, chapter 9, pp. 167–185. Wiley, New York (2007)

    Google Scholar 

  95. Aracil, R., Ferre, M.: Telerobotics for aerial live power line maintenance. In: Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 459–469. Springer, Heidelberg (2007)

    Google Scholar 

  96. Dunlap, J.H., Van Name, J.M., Henkener, J.A.: Robotic maintenance of overhead transmission lines. IEEE Trans. Power Delivery 1(3), 280–284 (1986)

    Google Scholar 

  97. Aracil, R., Ferre, M., Hernando, M., Pinto, E., Sebastian, J.M.: Telerobotic system for live-power line maintenance: ROBTET. Control. Eng. Pract. 10(11), 1271–1281 (2002)

    Google Scholar 

  98. Haas, C.T., Kim, Y.: Automation in infrastructure construction. Constr. Innov. 2(3), 191–210 (2002)

    Google Scholar 

  99. Hiramatsu, Y., Aono, T., Nishio, M.: Disaster restoration work for the eruption of Mt Usuzan using an unmanned construction system. Adv. Robot. 16(6), 505–508 (2002)

    Google Scholar 

  100. Lytle, A.M., Saidi, K.S., Bostelman, R.V., Stone, W.C., Scott, N.A.: Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane. Autom. Constr. 13(1), 101–118 (2004)

    Google Scholar 

  101. Roldán, J.J., del Cerro, J., Garzón-Ramos, D., Garcia-Aunon, P., Garzón, M., de León, J., Barrientos, A.: Robots in Agriculture: State of Art and Practical Experiences. IntechOpen (2018)

    Google Scholar 

  102. Bechar, A., Vigneault, C.: Agricultural robots for field operations: concepts and components. Biosyst. Eng. 149, 94–111 (2016)

    Google Scholar 

  103. Kantor, G.A., Vasconez, J.P., Auat-Cheein, F.A.: Human-robot interaction in agriculture: a survey and current challenges. Biosyst. Eng. 179, 35–48 (2019)

    Google Scholar 

  104. Opiyo, S., Zhou, J., Mwangi, E., Kai, W., Sunusi, I.: A review on teleoperation of mobile ground robots: architecture and situation awareness. Int. J. Control. Autom. Syst. 19(3), 1384–1407 (2020)

    Google Scholar 

  105. Kim, J., Kim, S., Ju, C., Son, H.I.: Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access 7(1), 105100–105115 (2019)

    Google Scholar 

  106. Ju, C., Son, H.I.: A haptic teleoperation of agricultural multi-uav. In: Workshop on Robotic Vision and Action in Agriculture: The Future of Agri-Food Systems and Its Deployment to the Real-World at the IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

  107. Adamides, G., Katsanos, C., Parmet, Y., Christou, G., Xenos, M., Hadzilacos, T., Edan, Y.: Hri usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Appl. Ergon. 62, 237–246 (2017)

    Google Scholar 

  108. Peña, C., Riaño, C., Moreno, G.: Robotgreen. a teleoperated agricultural robot for structured environments. J. Eng. Sci. Technol. Rev. 11(6), 144–155 (2018)

    Google Scholar 

  109. Kwitowski, A.J., Mayercheck, W.D., Brautigam, A.L.: Teleoperation for continuous miners and haulage equipment. IEEE Trans. Ind. Appl. 28(5), 1118–1125 (1992)

    Google Scholar 

  110. Flewelling, S., Baiden, G.R., Scoble, M.: Robotic systems development for mining automation. In: CIM (Canadian Institute of Mining) Bulletin, pp. 75–77 (1993)

    Google Scholar 

  111. Ralston, J.C., Hainsworth, D.W., Reid, D.C., Anderson, D.L., McPhee, R.J.: Recent advances in remote coal mining machine sensing, guidance, and teleoperation. Robotica 19(5), 513–526 (2001)

    Google Scholar 

  112. Park, A.J., Kazman, R.N.: Augmented reality for mining teleoperation. In: Das, H. (ed.) Telemanipulator and Telepresence Technologies, vol. 2351, pp. 119–129. International Society for Optics and Photonics, SPIE (1995)

    Google Scholar 

  113. Nelson, T.J., Olson, M.R., Wood, H.C.: Long delay telecontrol of lunar mining equipment. In: Proceedings 6th International Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, pp. 477–484 (2006)

    Google Scholar 

  114. Wilkinson, N.: Cooperative control in tele-operated mining environments. In: Proceedings 55th International Astronautical Congress, Vancouver, vol. 2351. International Astronautical Federation, the International Academy of Astronautics and the International Institute of Space Law, Paris (2004)

    Google Scholar 

  115. Ridao, P., Carreras, M., Hernandez, E., Palomeras, N.: Underwater Telerobotics for Collaborative Research, pp. 347–359. Springer, Berlin (2007)

    Google Scholar 

  116. Harris, S., Ballard, R.: ARGO: Capabilities for deep ocean exploration. Oceans 18, 6–8 (1986)

    Google Scholar 

  117. Fontolan, M.: Prestige oil recovery from the sunken part of the Wreck. In: PAJ Oil Spill Symposium (Petroleum Association of Japan), Tokyo (2005)

    Google Scholar 

  118. Antonelli, G.: Underwater Robots: Motion and Force Control of Vehicle-Manipulator Systems. Springer, Berlin (2006)

    MATH  Google Scholar 

  119. Lee, M., Choi, H.-S.: A robust neural controller for underwater robot manipulators. IEEE Trans. Neural Netw. 11(6), 1465–1470 (2000)

    Google Scholar 

  120. Kumagai, J.: Swimming to Europa. IEEE Spectr. 44(9), 33–40 (2007)

    Google Scholar 

  121. Pedersen, L., Kortenkamp, D., Wettergreen, D., Nourbakhsh, I.: A survey of space robotics. In: Proceedings 7th International Symposium Artificial Intelligence. Robotics and Automation Space, Nara (2003)

    Google Scholar 

  122. Cruijssen, H.J., Ellenbroek, M., Henderson, M., Petersen, H., Verzijden, P., Visser, M.: The European Robotic Arm: a high-performance mechanism finally on its way to space. In: 42nd Aerospace Mechanism Symposium, NASA Goddard Space Flight Center, Maryland, pp. 319–334 (2014)

    Google Scholar 

  123. Roderick, S., Roberts, B., Atkins, E., Akin, D.: The Ranger robotic satellite servicer and its autonomous software-based safety system. IEEE Intell. Syst. 19(5), 12–19 (2004)

    Google Scholar 

  124. Bluethmann, W., Ambrose, R., Diftler, M., Askew, S., Huber, E., Goza, M., Rehnmark, F., Lovchik, C., Magruder, D.: Robonaut: A robot designed to work with humans in space. Auton. Robot. 14, 179–197 (2003)

    MATH  Google Scholar 

  125. Hirzinger, G., Brunner, B., Landzettel, K., Sporer, N., Butterfass, J., Schedl, M.: Space robotics—DLR’s telerobotic concepts, lightweight arms and articulated hands. Auton. Robot. 14, 127–145 (2003)

    MATH  Google Scholar 

  126. Fredrickson, S.E., Duran, S., Mitchell, J.D.: Mini AER-Cam inspection robot for human space missions. In: AIAA Space 2004 Conference Exhib., San Diego (2004)

    Google Scholar 

  127. Imaida, T., Yokokohji, Y., Doi, T., Oda, M., Yoshikawa, T.: Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Trans. Robot. Autom. 20(3), 499–511 (2004)

    Google Scholar 

  128. Lindemann, R.A., Bickler, D.B., Harrington, B.D., Ortiz, G.M., Voothees, C.J.: Mars exploration rover mobility development. IEEE Robot. Autom. Mag. 13(2), 19–26 (2006)

    Google Scholar 

  129. Touchdown! NASA’s Mars Perseverance Rover Safely Lands on Red Planet. https://mars.nasa.gov/news/8865/. Accessed: 2021-02-18

  130. Landis, G.A.: Robots and humans: synergy in planetary exploration. Acta Astronaut. 55(12), 985–990 (2004)

    Google Scholar 

  131. Hauser, K., Shaw, R.: How medical robots will help treat patients in future outbreaks. In: IEEE Spectrum, p. 6 (2020)

    Google Scholar 

  132. Avgousti, S., Christoforou, E.G., Panayides, A.S., Voskarides, S., Novales, C., Nouaille, L., Pattichis, C.S., Vieyres, P.: Medical telerobotic systems: current status and future trends. BioMedical Engineering OnLine 15(96), 44 (2016)

    Google Scholar 

  133. Marescaux, J., Leroy, J., Gagner, M., Rubino, F., Mutter, D., Vix, M., Butner, S.E., Smith, M.: Transatlantic robot-assisted telesurgery. Nature 413, 379–380 (2001)

    Google Scholar 

  134. Butner, S.E., Ghodoussi, M.: A real-time system for tele-surgery. In: Proceedings 21st International Conference on Distributed Computing Systems, pp. 236–243 (2001)

    Google Scholar 

  135. Guthart, G.S., Salisbury Jr., J.K.: The IntuitiveTM telesurgery system: overview and application. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation, San Francisco, vol. 1, pp. 618–621 (2000)

    Google Scholar 

  136. George, E.I., Brand, T.C., LaPorta, A., Marescaux, J., Satava, R.M.: Origins of robotic surgery: from skepticism to standard of care. J. Soc. Laparoendosc. Surg. JSLS 22(4), 14, 10–12 (2018)

    Google Scholar 

  137. Li, M., Kapoor, A., Taylor, R.H.: Telerobotic control by virtual fixtures for surgical applications. In: Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 381–401. Springer, Berlin (2007)

    Google Scholar 

  138. Smith, A., Smith, J., Jayne, D.G.: Telerobotics: surgery for the 21st century. Surgery 24(2), 74–78 (2006)

    Google Scholar 

  139. Topping, M.: An Overview of the development of Handy 1, a rehabilitation robot to assist the severely disabled. J. Intell. Robot. Syst. 34(3), 253–263 (2002)

    MATH  Google Scholar 

  140. Balaguer, C., Giménez, A., Jardón, A., Correal, R., Martínez, S., Sabatini, A., Genovese, V.: Proprio and teleoperation of a robotic system for disabled persons’ assistance in domestic environments. In: Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 415–427. Springer, Berlin (2007)

    Google Scholar 

  141. Reinoso, O., Fernández, C., Ñeco, R.: User voice assistant tool for teleoperation. In: Advances in Telerobotics. Springer Tracts in Advanced Robotics, vol. 31, pp. 107–120. Springer, Berlin (2007)

    Google Scholar 

  142. Pires, G., Nunes, U.: A wheelchair steered through voice commands and assisted by a reactive fuzzy logic controller. J. Intell. Robot. Syst. 34(3), 301–314 (2002)

    MATH  Google Scholar 

  143. Hoppenot, P., Colle, E.: Human-like behavior robot-application to disabled people assistance. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 155–160 (2000)

    MATH  Google Scholar 

  144. Pollack, M.E., Engberg, S., Matthews, J.T., Thrun, S., Brown, L., Colbry, D., Orosz, C., Peintner, B., Ramakrishnan, S., Dunbar-jacob, J., Mccarthy, C., Montemerlo, M., Pineau, J., Roy, N.: Pearl: a mobile robotic assistant for the elderly. In: AAAI Workshop Autom. Eldercare, Alberta (2002)

    Google Scholar 

  145. Wojtara, T., Nonami, K., Shao, H., Yuasa, R., Amano, S., Waterman, D., Nobumoto, Y.: Hydraulic master-slave land mine clearance robot hand controlled by pulse modulation. Mechatronics 15, 589–609 (2005)

    Google Scholar 

  146. Kato, K., Hirose, S.: Development of the quadruped walking robot, TITAN-IX-mechanical design concept and application for the humanitarian demining robot. Adv. Robot. 15(2), 191–204 (2001)

    Google Scholar 

  147. Gonzalez de Santos, P., Garcia, E., Cobano, J.A., Ramirez, A.: SILO6: a six-legged robot for humanitarian de-mining tasks. In: Robotics: Trends, Principles, and Applications—Proceedings of the Sixth Biannual World Automation Congress, WAC (2004)

    Google Scholar 

  148. Habib, M.K.: Humanitarian demining: reality and the challenge of technology-The state of the art. Int. J. Adv. Robot. Syst. 4(2), 151–172 (2007)

    Google Scholar 

  149. Heradio, R., de La Torre, L., Galan, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016)

    Google Scholar 

  150. Tzafestas, C.S., Palaiologou, N., Alifragis, M.: Virtual and remote robotic laboratory: comparative experimental evaluation. IEEE Trans. Educ. 49(3), 360–369 (2006)

    Google Scholar 

  151. Giralt, X., Jofre, D., Costa, R., Basañez, L.: Proyecto de Laboratorio Remoto de Automática: Objetivos y Arquitectura Propuesta. In: III Jornadas de Trabajo EIWISA 02, Enseñanza vía Internet/Web de la Ingeniería de Sistemas y Automática, Alicante, pp. 93–98 (2002)

    Google Scholar 

  152. Alencastre-Miranda, M., Munoz-Gomez, L., Rudomin, I.: Teleoperating robots in multiuser virtual environments. In: Proceedings of the Fourth Mexican International Conference on Computer Science ENC, Tlaxcala, pp. 314–321 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Basañez , Emmanuel Nuño or Carlos I. Aldana .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basañez, L., Nuño, E., Aldana, C.I. (2023). Teleoperation and Level of Automation. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_20

Download citation

Publish with us

Policies and ethics