Skip to main content

Historical Perspective of Automation

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

Editor note: This chapter includes three parts: 2.1 A History of Automatic Control by Christopher Bissell; 2.2 Advances in Industrial Automation: Historical Perspectives by Theodore J. Williams; and 2.3 Advances in Robotics and Automation: Historical Perspectives by Yukio Hasegawa. The three parts were written by leaders and pioneers of automation, at the time the original edition of this handbook was published in 2009. Our distinguished editorial advisory board members have recommended to keep these chapters as originally published, for their authentic historical value. Additional historical perspectives, specific to chapter topics, are provided throughout this Handbook.

Christopher Bissell: deceased. Theodore J. Williams: deceased. Yukio Hasegawa: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mayr, O.: The Origins of Feedback Control. MIT, Cambridge (1970)

    MATH  Google Scholar 

  2. Gibbs, F.W.: The furnaces and thermometers of Cornelius Drebbel. Ann. Sci. 6, 32–43 (1948)

    Google Scholar 

  3. Mead, T.: Regulators for wind and other mills, British Patent (Old Series) 1628 (1787)

    Google Scholar 

  4. Dickinson, H.W., Jenkins, R.: James Watt and the Steam Engine. Clarendon Press, Oxford (1927)

    Google Scholar 

  5. Bennett, S.: A History of Control Engineering 1800–1930. Peregrinus, Stevenage (1979)

    Google Scholar 

  6. Airy, G.B.: On the regulator of the clock-work for effecting uniform movement of equatorials. Mem. R. Astron. Soc. 11, 249–267 (1840)

    Google Scholar 

  7. Maxwell, J.C.: On governors. Proc. R. Soc. 16, 270–283 (1867)

    MATH  Google Scholar 

  8. Routh, E.J.: A Treatise on the Stability of a Given State of Motion. Macmillan, London (1877)

    Google Scholar 

  9. Bissell, C.C.: Stodola, Hurwitz and the genesis of the stability criterion. Int. J. Control. 50(6), 2313–2332 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Hurwitz, A.: Über die Bedingungen, unterwelcheneine Gleichungnur Wurzelnmitnegativenreellen Teilenbesitzt. Math. Ann. 46, 273–280 (1895), in German

    Google Scholar 

  11. Bompiani, E.: Sullecondizione sotto le quali un equazione a coefficientirealeammette solo radici con parte reale negative. G. Mat. 49, 33–39 (1911), in Italian

    Google Scholar 

  12. Bissell, C.C.: The classics revisited – Part I. Meas. Control. 32, 139–144 (1999)

    Google Scholar 

  13. Bissell, C.C.: The classics revisited – Part II. Meas. Control. 32, 169–173 (1999)

    Google Scholar 

  14. Tolle, M.: Die Regelung der Kraftmaschinen, 3rd edn. Springer, Berlin (1922), in German

    Google Scholar 

  15. Mayr, O.: Feedback Mechanisms. Smithsonian Institution Press, Washington, DC (1971)

    Google Scholar 

  16. Hughes, T.P.: Elmer Sperry: Inventor and Engineer. Johns Hopkins University Press, Baltimore (1971)

    Google Scholar 

  17. Bennett, S.: A History of Control Engineering 1800–1930, p. 137. Peregrinus, Stevenage (1979)

    Google Scholar 

  18. Minorsky, N.: Directional stability of automatically steered bodies. Trans. Inst. Naval Archit. 87, 123–159 (1922)

    Google Scholar 

  19. Bennett, S.: A History of Control Engineering 1930–1955. Peregrinus, Stevenage (1993)

    MATH  Google Scholar 

  20. Heaviside, O.: Electrical Papers. Chelsea/New York (1970), reprint of the 2nd edn

    Google Scholar 

  21. Bennett, S.: A History of Control Engineering 1800–1930. Peregrinus, Stevenage (1979), Chap. 6

    Google Scholar 

  22. Bissell, C.C.: Karl Küpfmüller: a German contributor to the early development of linear systems theory. Int. J. Control. 44, 977–989 (1986)

    MATH  Google Scholar 

  23. Black, H.S.: Stabilized feedback amplifiers. Bell Syst. Tech. J. 13, 1–18 (1934)

    Google Scholar 

  24. Nyquist, H.: Regeneration theory. Bell Syst. Tech. J. 11, 126–147 (1932)

    MATH  Google Scholar 

  25. Bode, H.W.: Relations between amplitude and phase in feedback amplifier design. Bell Syst. Tech. J. 19, 421–454 (1940)

    Google Scholar 

  26. Bode, H.W.: Network Analysis and Feedback Amplifier Design. Van Nostrand, Princeton (1945)

    Google Scholar 

  27. Hazen, H.L.: Theory of servomechanisms. J. Frankl. Inst. 218, 283–331 (1934)

    Google Scholar 

  28. Leonhard, A.: Die Selbsttätige Regelung in der Elektrotechnik. Springer, Berlin (1940), in German

    Google Scholar 

  29. Bissell, C.C.: The first all-union conference on automatic control, Moscow, 1940. IEEE Control. Syst. Mag. 22, 15–21 (2002)

    Google Scholar 

  30. Bissell, C.C.: A.A. Andronov and the development of Soviet control engineering. IEEE Control. Syst. Mag. 18, 56–62 (1998)

    Google Scholar 

  31. Mindell, D.: Between Human and Machine. Johns Hopkins University Press, Baltimore (2002)

    Google Scholar 

  32. Bissell, C.C.: Textbooks and subtexts. IEEE Control. Syst. Mag. 16, 71–78 (1996)

    Google Scholar 

  33. Schmidt, H.: Regelungstechnik – die technische Aufgabe und ihrewissenschaftliche, sozialpolitische und kulturpolitische Auswirkung. Z. VDI 4, 81–88 (1941), in German

    Google Scholar 

  34. Bissell, C.C.: Control engineering in the former USSR: some ideological aspects of the early years. IEEE Control. Syst. Mag. 19, 111–117 (1999)

    Google Scholar 

  35. Dalmedico, A.D.: Early developments of nonlinear science in Soviet Russia: the Andronov school at Gorky. Sci. Context. 1/2, 235–265 (2004)

    MATH  Google Scholar 

  36. Hall, A.C.: The Analysis and Synthesis of Linear Servomechanisms (Restricted Circulation). The Technology Press, Cambridge (1943)

    Google Scholar 

  37. Hall, A.C.: Application of circuit theory to the design of servomechanisms. J. Frankl. Inst. 242, 279–307 (1946)

    Google Scholar 

  38. Bennett, S.: A History of Control Engineering 1930–1955, p. 142. Peregrinus, Stevenage (1993)

    MATH  Google Scholar 

  39. James, H.J., Nichols, N.B., Phillips, R.S.: Theory of Servomechanisms, Radiation Laboratory, vol. 25. McGraw-Hill, New York (1947)

    Google Scholar 

  40. Bissell, C.C.: Pioneers of control: an interview with Arnold Tustin. IEE Rev. 38, 223–226 (1992)

    Google Scholar 

  41. Whiteley, A.L.: Theory of servo systems with particular reference to stabilization. J. Inst. Electr. Eng. 93, 353–372 (1946)

    Google Scholar 

  42. Bissell, C.C.: Six decades in control: an interview with Winfried Oppelt. IEE Rev. 38, 17–21 (1992)

    Google Scholar 

  43. Bissell, C.C.: An interview with Hans Sartorius. IEEE Control. Syst. Mag. 27, 110–112 (2007)

    Google Scholar 

  44. Evans, W.R.: Control system synthesis by root locus method. Trans. AIEE. 69, 1–4 (1950)

    Google Scholar 

  45. Andronov, A.A., Khaikin, S.E.: Theory of Oscillators. Princeton University Press, Princeton (1949), translated and adapted by S. Lefschetz from Russian 1937 publication

    Google Scholar 

  46. MacColl, L.A.: Fundamental Theory of Servomechanisms. Van Nostrand, Princeton (1945)

    MATH  Google Scholar 

  47. Bennett, S.: The emergence of a discipline: automatic control 1940–1960. Automatica. 12, 113–121 (1976)

    MathSciNet  MATH  Google Scholar 

  48. Feigenbaum, E.A.: Soviet cybernetics and computer sciences, 1960. Commun. ACM. 4(12), 566–579 (1961)

    Google Scholar 

  49. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  50. Kalman, R.E.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 5, 102–119 (1960)

    MathSciNet  Google Scholar 

  51. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82, 34–45 (1960)

    MathSciNet  Google Scholar 

  52. Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. Trans. ASME J. Basic Eng. 83, 95–108 (1961)

    MathSciNet  Google Scholar 

  53. Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    Google Scholar 

  54. Williams, T.J.: Computer control technology – past, present, and probable future. Trans. Inst. Meas. Control. 5, 7–19 (1983)

    Google Scholar 

  55. Davis, C.A.: Industrial Electronics: Design and Application, p. 458. Merrill, Columbus (1973)

    Google Scholar 

  56. Williams, T.J., Nof, S.Y.: Control models. In: Salvendy, G. (ed.) Handbook of Industrial Engineering, 2nd edn, pp. 211–238. Wiley, New York (1992)

    Google Scholar 

  57. Willems, J.C.: In control, almost from the beginning until the day after tomorrow. Eur. J. Control. 13, 71–81 (2007)

    MathSciNet  MATH  Google Scholar 

  58. Brown, G.S., Campbell, D.P.: Instrument engineering: its growth and promise in process-control problems. Mech. Eng. 72, 124–127 (1950)

    Google Scholar 

  59. Brown, G.S., Campbell, D.P.: Instrument engineering: its growth and promise in process-control problems. Mech. Eng. 72, 136 (1950)

    Google Scholar 

  60. Brown, G.S., Campbell, D.P.: Instrument engineering: its growth and promise in process-control problems. Mech. Eng. 72, 587–589 (1950), discussion

    Google Scholar 

  61. Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the Machine. Wiley, New York (1948)

    Google Scholar 

  62. Noble, D.F.: Forces of Production. A Social History of Industrial Automation. Knopf, New York (1984)

    Google Scholar 

  63. Nof, S.Y.: Collaborative control theory for e-Work, e-Production and e-Service. Annu. Rev. Control. 31, 281–292 (2007)

    Google Scholar 

  64. Johannesen, G.: From control to cognition: historical views on human engineering. Stud. Inf. Control. 16(4), 379–392 (2007)

    Google Scholar 

  65. Li, H., Williams, T.J.: Interface design for the Purdue Enterprise Reference Architecture (PERA) and methodology in e-Work. Prod. Plan. Control. 14(8), 704–719 (2003)

    Google Scholar 

  66. Rathwell, G.A., Williams, T.J.: Use of purdue reference architecture and methodology in industry (the Fluor Daniel example). In: Bernus, P., Nemes, L. (eds.) Modeling and Methodologies for Enterprise Integration. Chapman Hall, London (1996)

    Google Scholar 

  67. Williams, T.J., Bernus, P., Brosvic, J., Chen, D., Doumeingts, G., Nemes, L., Nevins, J.L., Vallespir, B., Vliestra, J., Zoetekouw, D.: Architectures for integrating manufacturing activities and enterprises. Control. Eng. Pract. 2(6), 939–960 (1994)

    Google Scholar 

  68. Williams, T.J.: One view of the future of industrial control. Eng. Pract. 1(3), 423–433 (1993)

    Google Scholar 

  69. Williams, T.J.: A reference model for computer integrated manufacturing (CIM). In: Int. Purdue Workshop Industrial Computer Systems. Instrument Society of America, Pittsburgh (1989)

    Google Scholar 

  70. Williams, T.J.: The Use of Digital Computers in Process Control, p. 384. Instrument Society of America, Pittsburgh (1984)

    Google Scholar 

  71. Williams, T.J.: 20 years of computer control. Can. Control. Instrum. 16(12), 25 (1977)

    Google Scholar 

  72. Williams, T.J.: Two decades of change: a review of the 20-year history of computer control. Can. Control. Instrum. 16(9), 35–37 (1977)

    Google Scholar 

  73. Williams, T.J.: Trends in the development of process control computer systems. J. Qual. Technol. 8(2), 63–73 (1976)

    Google Scholar 

  74. Williams, T.J.: Applied digital control – some comments on history, present status and foreseen trends for the future. In: Adv. Instrum., Proc. 25th Annual ISA Conf, p. 1 (1970)

    Google Scholar 

  75. Williams, T.J.: Computers and process control. Ind. Eng. Chem. 62(2), 28–40 (1970)

    Google Scholar 

  76. Williams, T.J.: The coming years... The era of computing control. Instrum. Technol. 17(1), 57–63 (1970)

    Google Scholar 

  77. Williams, T.J.: The Purdue Enterprise Reference Architecture. Instrument Society of America, Pittsburgh (1992)

    Google Scholar 

  78. Hasegawa, Y.: Analysis of Complicated Operations for Robotization, SME Paper No. MS79-287 (1979)

    Google Scholar 

  79. Hasegawa, Y.: Evaluation and economic justification. In: Nof, S.Y. (ed.) Handbook of Industrial Robotics, pp. 665–687. Wiley, New York (1985)

    Google Scholar 

  80. Hasegawa, Y.: Analysis and classification of industrial robot characteristics. Ind. Robot Int. J. 1(3), 106–111 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bissell, C., Williams, T.J., Hasegawa, Y. (2023). Historical Perspective of Automation. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_2

Download citation

Publish with us

Policies and ethics