Skip to main content

Network Science and Automation

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

Abstract

From distributed sensing to autonomous vehicles, networks are a crucial component of almost all our automated systems. Indeed, automation requires a coordinated functionality among different, self-driven, autonomous units. For example, robots that must mobilize in unison, vehicles or drones that must safely share space with each other, and, of course, complex infrastructure networks, such as the Internet, which require cooperative dynamics among its millions of interdependent routers. At the heart of such multi-component coordination lies a complex network, capturing the patterns of interaction between its constituting autonomous nodes. This network allows the different units to exchange information, influence each other’s functionality, and, ultimately, achieve globally synchronous behavior. Here, we lay out the mathematical foundations for such emergent large-scale network-based cooperation. First, analyzing the structural patterns of networks in automation, and then showing how these patterns contribute to the system’s resilient and coordinated functionality. With this toolbox at hand, we discuss common applications, from cyber-resilience to sensor networks and coordinated robotic motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Seneta, E. Non-negative Matrices and Markov Chains. Springer, New York (1981)

    MATH  Google Scholar 

  3. Fagnani, F., Frasca, P.: Introduction to Averaging Dynamics over Networks. Springer, Cham (2018)

    MATH  Google Scholar 

  4. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Broido, A.D., Clauset, A.: Scale-free networks are rare. Nat. Commun. 10(1), 1017 (2019)

    Google Scholar 

  6. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    MATH  Google Scholar 

  7. Barzel, B., Biham, O.: Quantifying the connectivity of a network: the network correlation function method. Phys. Rev. E 80(4), 046104–046113 (2009)

    Google Scholar 

  8. Barzel, B., Barabási, A.-L.: Universality in network dynamics. Nat. Phys. 9, 673–681 (2013)

    Google Scholar 

  9. French, J.R.P.: A formal theory of social power. Psychol. Rev. 63(3), 181–194 (1956)

    Google Scholar 

  10. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    MATH  Google Scholar 

  11. Jia, P., MirTabatabaei, A., Friedkin, N.E., Bullo, F.: Opinion dynamics and the evolution of social power in influence networks. SIAM Rev. 57(3), 367–397 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Anderson, B.D.O, Ye, M.: Recent advances in the modelling and analysis of opinion dynamics on influence networks. Int. J. Autom. Comput. 16(2), 129–149 (2019)

    Google Scholar 

  13. Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control, 1 edn. Springer, London (2003)

    MATH  Google Scholar 

  14. Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica 53, 424–440 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Olshevsky, A., Tsitsiklis, J.N.: Convergence speed in distributed consensus and averaging. SIAM J. Control. Optim. 48(1), 33–55 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control Lett. 53(1), 65–78 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans. Autom. Control 31(9), 803–812 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Autom. Control 50(2), 169–182 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Altafini, C.: Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Control 58(4), 935–946 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Frasca, P., Carli, R., Fagnani, F., Zampieri, S.: Average consensus on networks with quantized communication. Int. J. Robust Nonlinear Control 19(16), 1787–1816 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Giannini, S., Petitti, A., Di Paola, D., Rizzo, A.: Asynchronous max-consensus protocol with time delays: convergence results and applications. IEEE Trans. Circuits Syst. Regul. Pap. 63(2), 256–264 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Pikovsky, A., Rosenblum, M.G., Kurths, J.: Synchronization, A Universal Concept in Nonlinear Sciences. Cambridge University, Cambridge (2001)

    MATH  Google Scholar 

  23. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998)

    Google Scholar 

  24. Frasca, M., Buscarino, A., Rizzo, A., Fortuna, L., Boccaletti, S.: Synchronization of moving chaotic agents. Phys. Rev. Lett. 100, 044102 (2008)

    Google Scholar 

  25. Porfiri, M.: A master stability function for stochastically coupled chaotic maps. EPL (Europhys. Lett.) 96(4), 40014 (2011)

    Google Scholar 

  26. Del Genio, C.I., Gómez-Gardeñes, J., Bonamassa, I., Boccaletti, S.: Synchronization in networks with multiple interaction layers. Sci. Adv. 2(11), e1601679 (2016)

    Google Scholar 

  27. Tang, L., Wu, X., Lü, J., Lu, J.-A., D’Souza, R.M.: Master stability functions for complete, intralayer, and interlayer synchronization in multiplex networks of coupled rössler oscillators. Phys. Rev. E 99(1), 012304 (2019)

    Google Scholar 

  28. Gambuzza, L.V., Di Patti, F., Gallo, L., Lepri, S., Romance, M., Criado, R., Frasca, M., Latora, V., Boccaletti, S.: Stability of synchronization in simplicial complexes. Nat. Commun. 12(1), 1255 (2021)

    MATH  Google Scholar 

  29. DeLellis, P., di Bernardo, M., Russo, G.: On QUAD, Lipschitz, and contracting vector fields for consensus and synchronization of networks. IEEE Trans. Circuits Syst. Regul. Pap. 58(3), 576–583 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Wang, W., Slotine, J.-J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92(1), 38–53 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Harush, U., Barzel, B.: Dynamic patterns of information flow in complex networks. Nat. Commun. 8, 1–11 (2016)

    Google Scholar 

  32. Hens, C., Harush, U., Haber, S., Cohen, R., Barzel, B.: Spatiotemporal signal propagation in complex networks. Nat. Phys. 15, 403–412 (2019)

    Google Scholar 

  33. Gao, J., Barzel, B., Barabási, A.-L.: Universal resilience patterns in complex networks. Nature 530, 307–312 (2016)

    Google Scholar 

  34. DeLellis, P., di Bernardo, M., Gorochowski, T.E., Russo, G.: Synchronization and control of complex networks via contraction, adaptation and evolution. IEEE Circuits Syst. Mag. 10(3), 64–82 (2010)

    Google Scholar 

  35. Tang, Y., Qian, F., Gao, H., Kurths, J.: Synchronization in complex networks and its application–a survey of recent advances and challenges. Annu. Rev. Control. 38(2), 184–198 (2014)

    Google Scholar 

  36. Wang, X.F., Chen, G.: Pinning control of scale-free dynamical networks. Physica A: Statistical Mechanics and its Applications 310(3), 521–531 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Lin, C.-T.: Structural controllability. IEEE Trans. Autom. Control 19(3), 201–208 (1974)

    MathSciNet  MATH  Google Scholar 

  38. Mesbahi, M., Egerstedt, M.: Graph theoretic methods in multiagent networks, 1st edn. Princeton University, Princeton (2010)

    MATH  Google Scholar 

  39. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature 473(7346), 167–173 (2011)

    Google Scholar 

  40. Wang, X., Su, H.: Pinning control of complex networked systems: A decade after and beyond. Annu. Rev. Control. 38(1), 103–111 (2014)

    Google Scholar 

  41. Xing, W., Shi, P., Agarwal, R.K., Zhao, Y.: A survey on global pinning synchronization of complex networks. J. Frankl. Inst. 356(6), 3590–3611 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Sorrentino, F., di Bernardo, M., Garofalo, F., Chen, G.: Controllability of complex networks via pinning. Phys. Rev. E 75, 046103 (2007)

    Google Scholar 

  43. Carli, R., D’Elia, E., Zampieri, S.: A PI controller based on asymmetric gossip communications for clocks synchronization in wireless sensors networks. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 7512–7517 (2011)

    Google Scholar 

  44. Andreasson, M., Dimarogonas, D.V., Sandberg, H., Johansson, K.H.: Distributed control of networked dynamical systems: Static feedback, integral action and consensus. IEEE Trans. Autom. Control 59(7), 1750–1764 (2014)

    MathSciNet  MATH  Google Scholar 

  45. Burbano Lombana, D.A., di Bernardo, M.: Distributed PID control for consensus of homogeneous and heterogeneous networks. IEEE Trans. Control Netw. Syst. 2(2), 154–163 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Yan, G., Ren, J., Lai, Y.-C., Lai, C.-H., Li, B.: Controlling complex networks: How much energy is needed? Phys. Rev. Lett. 108, 218703 (2012)

    Google Scholar 

  47. Pasqualetti, F., Zampieri, S., Bullo, F.: Controllability metrics, limitations and algorithms for complex networks. IEEE Trans. Control Netw. Syst. 1(1), 40–52 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Lindmark, G., Altafini, C.: Minimum energy control for complex networks. Sci. Rep. 8(1), 1–14 (2018)

    Google Scholar 

  49. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Google Scholar 

  50. Ross, S.M.: Introduction to Probability Models. Academic Press, Cambridge, 11 edn. (2014)

    MATH  Google Scholar 

  51. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas, 2nd edn. Princeton University, Princeton (2011)

    Google Scholar 

  52. Delvenne, J.-C., Carli, R., Zampieri, S.: Optimal strategies in the average consensus problem. Syst. Control Lett. 58(10), 759–765 (2009)

    MathSciNet  MATH  Google Scholar 

  53. Carli, R., Fagnani, F., Speranzon, A., Zampieri, S.: Communication constraints in the average consensus problem. Automatica 44(3), 671–684 (2008)

    MathSciNet  MATH  Google Scholar 

  54. Olfati-Saber, R.: Ultrafast consensus in small-world networks. In: Proceedings of the 2005, American Control Conference, 2005, vol. 4, pp. 2371–2378 (2005)

    Google Scholar 

  55. Tahbaz-Salehi, A., Jadbabaie, A.: Small world phenomenon, rapidly mixing Markov chains, and average consensus algorithms. In: Proceedings of the 2007 46th IEEE Conference on Decision and Control, pp. 276–281 (2007)

    Google Scholar 

  56. Olfati-Saber, R., Shamma, J.S.: Consensus filters for sensor networks and distributed sensor fusion. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 6698–6703 (2005)

    Google Scholar 

  57. Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed Kalman filtering in sensor networks with quantifiable performance. In: IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005, pp. 133–139 (2005)

    Google Scholar 

  58. Cattivelli, F.S., Sayed, A.H.: Diffusion strategies for distributed Kalman filtering and smoothing. IEEE Trans. Autom. Control 55(9), 2069–2084 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Di Paola, D., Petitti, A., Rizzo, A.: Distributed Kalman filtering via node selection in heterogeneous sensor networks. Int. J. Syst. Sci. 46(14), 2572–2583 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Franchi, A., Petitti, A., Rizzo, A.: Distributed estimation of state and parameters in multiagent cooperative load manipulation. IEEE Trans. Control Netw. Syst. 6(2), 690–701 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Rosato, V., Issacharoff, L., Tiriticco, F., Meloni, S., Porcellinis, S.D., Setola, R.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1/2), 63 (2008)

    Google Scholar 

  62. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)

    Google Scholar 

  63. Atputharajah, A., Saha, T.K.: Power system blackouts–literature review. In: 2009 International Conference on Industrial and Information Systems (ICIIS), pp. 460–465 (2009)

    Google Scholar 

  64. Menck, P.J., Heitzig, J., Kurths, J., Schellnhuber, H.J.: How dead ends undermine power grid stability. Nat. Commun. 5(1), 1–8 (2014)

    Google Scholar 

  65. Yang, Y., Nishikawa, T., Motter, A.E.: Small vulnerable sets determine large network cascades in power grids. Science 358(6365), eaan3184 (2017)

    Google Scholar 

  66. Schäfer, B., Witthaut, D., Timme, M., Latora, V.: Dynamically induced cascading failures in power grids. Nat. Commun. 9(1), 1–13 (2018)

    Google Scholar 

  67. Zhong, H., Nof, S.Y.: The dynamic lines of collaboration model: collaborative disruption response in cyber–physical systems. Comput. Ind. Eng. 87, 370–382 (2015)

    Google Scholar 

  68. Baqaee, D.R.: Cascading failures in production networks. Econometrica 86(5), 1819–1838 (2018)

    MathSciNet  MATH  Google Scholar 

  69. Valdez, L.D., Shekhtman, L., La Rocca, C.E., Zhang, X., Buldyrev, S.V., Trunfio, P.A., Braunstein, L.A., Havlin, S.: Cascading failures in complex networks. J. Complex Networks 8(2), cnaa013 (2020)

    Google Scholar 

  70. Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002)

    Google Scholar 

  71. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93(9), 1–4 (2004)

    MathSciNet  Google Scholar 

  72. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4), 4 (2004)

    Google Scholar 

  73. Arianos, S., Bompard, E., Carbone, A., Xue, F.: Power grid vulnerability: a complex network approach. Chaos 19(1), 013119 (2009)

    Google Scholar 

  74. Bompard, E., Pons, E., Wu, D.: Extended topological metrics for the analysis of power grid vulnerability. IEEE Syst. J. 6(3), 481–487 (2012)

    Google Scholar 

  75. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness and fragility: Percolation on random graphs. Phys. Rev. Lett. 85, 5468–5471 (2000)

    Google Scholar 

  76. Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000)

    Google Scholar 

  77. Cohen, R., Erez, K., Ben Avraham, D., Havlin, S.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001)

    Google Scholar 

  78. Bompard, E., Napoli, R., Xue, F.: Analysis of structural vulnerabilities in power transmission grids. Int. J. Crit. Infrastruct. Prot. 2(1–2), 5–12 (2009)

    Google Scholar 

  79. Sumpter, D.J.T.: Collective Animal Behavior. Princeton University, Princeton (2011)

    MATH  Google Scholar 

  80. Ren, W., Atkins, E.: Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control 17(10–11), 1002–1033 (2007)

    MathSciNet  MATH  Google Scholar 

  81. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks: A Mathematical Approach to Motion Coordination Algorithms. Princeton University, Princeton (2009)

    MATH  Google Scholar 

  82. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, London (1995)

    MATH  Google Scholar 

  83. Yu, W., Chen, G., Cao, M.: Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica 46(6), 1089–1095 (2010)

    MathSciNet  MATH  Google Scholar 

  84. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)

    MathSciNet  MATH  Google Scholar 

  85. Paley, D.A., Leonard, N.E., Sepulchre, R., Grunbaum, D., Parrish, J.K.: Oscillator models and collective motion. IEEE Control. Syst. Mag. 27(4), 89–105 (2007)

    Google Scholar 

  86. Wu, J., Li, X.: Collective synchronization of Kuramoto-oscillator networks. IEEE Circuits Syst. Mag. 20(3), 46–67 (2020)

    Google Scholar 

  87. Rodrigues, F.A., Peron, T.K.D., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. 610, 1–98 (2016)

    MathSciNet  MATH  Google Scholar 

  88. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946). PMID: 21010780

    Google Scholar 

  89. Shi, G., Altafini, C., Baras, J.S.: Dynamics over signed networks. SIAM Rev. 61(2), 229–257 (2019)

    MathSciNet  MATH  Google Scholar 

  90. Xia, W., Cao, M., Johansson, K.H.: Structural balance and opinion separation in trust–mistrust social networks. IEEE Trans. Control Netw. Syst. 3(1), 46–56 (2016)

    MathSciNet  MATH  Google Scholar 

  91. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    MathSciNet  MATH  Google Scholar 

  92. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    MathSciNet  MATH  Google Scholar 

  93. Ren, W., Beard, R.W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    MathSciNet  MATH  Google Scholar 

  94. DeLellis, P., di Bernardo, M., Garofalo, F., Porfiri, M.: Evolution of complex networks via edge snapping. IEEE Trans. Circuits Syst. Regul. Pap. 57(8), 2132–2143 (2010)

    MathSciNet  MATH  Google Scholar 

  95. DeLellis, P., di Bernardo, M., Porfiri, M.: Pinning control of complex networks via edge snapping. Chaos: An Interdisciplinary Journal of Nonlinear Science 21(3), 033119 (2011)

    MathSciNet  MATH  Google Scholar 

  96. Belykh, I., di Bernardo, M., Kurths, J., Porfiri, M.: Evolving dynamical networks. Physica D: Nonlinear Phenomena 267, 1–6 (2014). Evolving Dynamical Networks

    Google Scholar 

  97. Kia, S.S., Scoy, B.V., Cortes, J., Freeman, R.A., Lynch, K.M., Martinez, S.: Tutorial on dynamic average consensus: The problem, its applications, and the algorithms. IEEE Control Syst. 39(3), 40–72 (2019)

    MathSciNet  MATH  Google Scholar 

  98. Belykh, I.V., Belykh, V.N., Hasler, M.: Blinking model and synchronization in small-world networks with a time-varying coupling. Physica D: Nonlinear Phenomena 195(1), 188–206 (2004)

    MathSciNet  MATH  Google Scholar 

  99. Porfiri, M.: Stochastic synchronization in blinking networks of chaotic maps. Phys. Rev. E 85, 056114 (2012)

    Google Scholar 

  100. Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Trans. Autom. Control 50(11), 1867–1872 (2005)

    MathSciNet  MATH  Google Scholar 

  101. Abaid, N., Igel, I., Porfiri, M.: On the consensus protocol of conspecific agents. Linear Algebra Appl. 437(1), 221–235 (2012)

    MathSciNet  MATH  Google Scholar 

  102. Perra, N., Gonçalves, B., Pastor-Satorras, R., Vespignani, A.: Activity driven modeling of time varying networks. Sci. Rep. 2(1), 469 (2012)

    Google Scholar 

  103. Zino, L., Rizzo, A., Porfiri, M.: Continuous-time discrete-distribution theory for activity-driven networks. Phys. Rev. Lett. 117, 228302 (2016)

    Google Scholar 

  104. Zino, L., Rizzo, A., Porfiri, M.: An analytical framework for the study of epidemic models on activity driven networks. J. Complex Networks 5(6), 924–952 (2017)

    MathSciNet  MATH  Google Scholar 

  105. Zino, L., Rizzo, A., Porfiri, M.: Consensus over activity-driven networks. IEEE Trans. Control Netw. Syst. 7(2), 866–877 (2020)

    MathSciNet  MATH  Google Scholar 

  106. Frasca, M., Buscarino, A., Rizzo, A., Fortuna, L.: Spatial pinning control. Phys. Rev. Lett. 108(20), 204102 (2012)

    Google Scholar 

  107. Zhou, C., Kurths, J.: Dynamical weights and enhanced synchronization in adaptive complex networks. Phys. Rev. Lett. 96, 164102 (2006)

    Google Scholar 

  108. Tang, E., Bassett, D.S.: Colloquium: control of dynamics in brain networks. Rev. Mod. Phys. 90, 031003 (2018)

    MathSciNet  Google Scholar 

  109. Bassett, D.S., Bullmore, E.: Small-world brain networks. Neuroscientist 12(6), 512–523 (2006)

    Google Scholar 

  110. Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q.K., Yu, A.B., Kahn, A.E., Medaglia, J.D., Vettel, J.M., Miller, M.B., Grafton, S.T., Bassett, D.S.: Controllability of structural brain networks. Nat. Commun. 6(1), 1–10 (2015)

    Google Scholar 

  111. Pecora, L.M., Sorrentino, F., Hagerstrom, A.M., Murphy, T.E., Roy, R.: Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun. 5(1), 1–8 (2014)

    Google Scholar 

  112. Gambuzza, L.V., Frasca, M., Latora, V.: Distributed control of synchronization of a group of network nodes. IEEE Trans. Autom. Control 64(1), 365–372 (2018)

    MathSciNet  MATH  Google Scholar 

  113. Menara, T., Baggio, G., Bassett, D.S., Pasqualetti, F.: Stability conditions for cluster synchronization in networks of heterogeneous Kuramoto oscillators. IEEE Trans. Control Netw. Syst. 7(1), 302–314 (2020)

    MathSciNet  MATH  Google Scholar 

  114. Gambuzza, L., Frasca, M., Sorrentino, F., Pecora, L., Boccaletti, S.: Controlling symmetries and clustered dynamics of complex networks. IEEE Trans. Netw. Sci. Eng. 8(1), 282–293 (2020)

    MathSciNet  Google Scholar 

  115. Della Rossa, F., Pecora, L., Blaha, K., Shirin, A., Klickstein, I., Sorrentino, F.: Symmetries and cluster synchronization in multilayer networks. Nat. Commun. 11(1), 1–17 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to Claudio Altafini, Francesco Bullo, Mario di Bernardo, Mattia Frasca, Maurizio Porfiri, and Sandro Zampieri for precious discussion and advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Zino , Baruch Barzel or Alessandro Rizzo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zino, L., Barzel, B., Rizzo, A. (2023). Network Science and Automation. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_11

Download citation

Publish with us

Policies and ethics