Skip to main content

Machine Learning for Green Smart Homes

  • Chapter
  • First Online:
Computational Intelligence Techniques for Green Smart Cities

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Smarter approaches to data processing are essential to realise the potential benefits of the exponential growth in energy data in homes from a variety of sources, such as smart metres, sensors and other devices. Machine learning encompasses several techniques to process and visualise data. Each technique is specifically suited to certain data types and problems, whether it be supervised, unsupervised or reinforcement learning. These techniques can be applied to increase the efficient use of energy within a home, enable better and more accurate home owner decision-making and help contribute to greener building stock. This chapter presents the state of the art in this area and looks forward to potential new uses for machine learning in renewable energy data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amri, Y., et al.: Analysis clustering of electricity usage profile using K-means algorithm. IOP Conf. Ser.: Mater. Sci. Eng. 105, 012020 (2016). ISSN: 1757-8981, 1757-899X. https://doi.org/10.1088/1757-899X/105/1/012020.

  2. Andersen, F., et al.: Residential electricity consumption and household characteristics: an econometric analysis of Danish smart-meter data. Energy Econ. 105341 (2021)

    Google Scholar 

  3. Beaudin, M., Zareipour, H.: Home energy management systems: a review of modelling and complexity. In: Renew. Sustain. Energy Rev. 45, 318–335 (2015). ISSN: 13640321. https://doi.org/10.1016/j.rser.2015.01.046.

  4. Brownlee, J.: A Gentle Introduction to Bayes Theorem for Machine Learning, Oct 2019

    Google Scholar 

  5. C2ES. Home Energy Use. https://www.c2es.org/content/home-energy-use/. Institutional Website (2021)

  6. Chesser, M. et al.: Air source heat pump in-situ performance. Energy Build. 251, 111365 (2021). ISSN: 0378-7788. https://doi.org/10.1016/j.enbuild.2021.111365., https://www.sciencedirect.com/science/article/pii/S0378778821006496

  7. Chesser, M. et al.: Probability density distributions for household air source heat pump electricity demand. In: Proceedings of Computer Science, vol. 175, The 17th International Conference on Mobile Systems and Pervasive Computing (MobiSPC), The 15th International Conference on Future Networks and Communications (FNC), The 10th International Conference on Sustainable Energy Information Technology, pp. 468–475. ISSN: 1877-0509 (2020). https://doi.org/10.1016/j.procs.2020.07.067., https://bit.ly/3HcKXNk

  8. Ciptadi, A.: What Is Deep Learning and How Is It Different from Machine Leearning. https://bit.ly/3xsjjr4. Institutional Website, May 2019

  9. Commission for Energy Regulation (CER): CER Smart Metering Project—Electricity Customer Behaviour Trial, 2009–2010 [dataset]. Irish Social Science Data Archive. SN: 0012-00, 1st edn. Accessed Jan 2018 (2012). www.ucd.ie/issda/CER-electricity

  10. CommunityPower: Community Power

    Google Scholar 

  11. Constable, G., et al.: A Century of Innovation: Twenty Engineering Achievements that Transformed Our Lives. Joseph Henry Press, Washington. DC, USA (2021). ISBN: 0-309-08908-5

    Google Scholar 

  12. Daniotti, B., et al.: Workshop: BIM4EEB: A BIM-based toolkit for efficient innovation in buildings. Proceedings 65(1), 17 (2021). ISSN: 2504-3900. https://doi.org/10.3390/proceedings2020065017

  13. DARPA: ARPANET. https://www.darpa.mil/about-us/timeline/arpanet. Institucional (2021)

  14. DTIF: Disruptive Technologies Innovation Fund. https://bit.ly/3sjuz6v. Government

  15. Dubuisson, X.: Retrokit Software Platform (2021). https://retrokit.eu/. Institutional Website

  16. Dwivedi, R.: How Does K-Nearest Neighbor Works In Machine Learning Classification Problem? https://www.analyticssteps.com/blogs/how-does-k-nearest-neighbor-works-machine-learning-classification-problem. Institutional Website, July 2021

  17. EC: Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic and Social Committee, The Committee Of the Regions and the European Investment Bank, Sept 2017

    Google Scholar 

  18. EC: Energy Performance of Buildings Directive (EPBD) Compliance Study, Dec 2015

    Google Scholar 

  19. EC: Interoperable Solutions Connecting Smart Homes, Buildings and Grids—Digitising and Transforming European Industry and Services: Digital Innovation Hubs and Platforms. Funding & Tender Opportunities, July 2018. https://bit.ly/3F87kS0

  20. ECE. Improving Efficiency of Buildings through Digitalization—Policy Recommendations from the Task Force on Digitalization in Energy. Policy Recommendation ECE/ENERGY/GE.6/2021/5, p. 11. Economic Commission for Europe, Geneva, Switzerland, June 2021

    Google Scholar 

  21. ECE: Report of the Committee on Housing and Land Management on Its Seventy-Seventh Session. Committee on Housing and Land Management ECE/HBP/188, p. 9. Economic and Social Council, Geneva, Switzerland, Sept 2016

    Google Scholar 

  22. ECF: European Climate Foundation—Annual Report 2011. Executive Summary, p. 40. European Climate Foundation, Netherlands, Nov 2021

    Google Scholar 

  23. Economidou, M.: Europe’s Building Under the Microscope. Technical Report Brussel, p. 132. Buildings Performance Institute Europe (BPIE), Belgium (2011)

    Google Scholar 

  24. Commission, European: Directorate General for Energy. Publications Office, Clean Energy for All Europeans. LU (2019)

    Google Scholar 

  25. Fitzpatrick, J., Carroll, P., Ajwani, D.: Creating and characterising electricity load profiles of residential buildings. In: Lemaire, V. et al. (eds.) Advanced Analytics and Learning on Temporal Data, pp. 182–203. Springer International Publishing, Cham (2020). ISBN: 978-3-030-65742-0. https://doi.org/10.1007/978-3-030-65742-0_13

  26. Ghalehkhondabi, I., et al.: An overview of energy demand forecasting methods published in 2005–2015. Energy Syst. (Berlin Period.) 8(2), 411–447 (2017). https://doi.org/10.1007/s12667-016-0203-y

    Article  Google Scholar 

  27. GOI: Project Ireland 2040. https://bit.ly/3yLEVi2. Institutional, Apr 2021

  28. Graafmans, J., et al.: Gerontechnology: matching the technological environment to the needs and capacities of the elderly. Technische Universiteit Eindhoven 93(161), 13 (1993)

    Google Scholar 

  29. Gram-Hanssen, K., Darby, S.J.: “Home is where the smart is”? Evaluating smart home research and approaches against the concept of home. Energy Res. Soc. Sci. 37, 94–101 (2018). ISSN: 22146296. https://doi.org/10.1016/j.erss.2017.09.037

  30. IBM: Internet of Things. Institutional Website (2021). https://www.ibm.com/analytics/au/en/internet-of-things/

  31. IEA: Energy Efficiency Indicators: Overview. Statistics Report Statistics report—December 2020. International Energy Agency, Paris (Dec 2020)

    Google Scholar 

  32. IEA: Net Zero by 2050. Flagship Report, p. 224. International Energy Agency (IEA), Paris, France (Oct 2021)

    Google Scholar 

  33. IEEE: IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (IEEE Std 802.11-1997). IEEE Standard, p. 466. IEEE, New York, NY, USA, June 1997. https://doi.org/10.1109/IEEESTD.1997.85951

  34. IERC: CENTS Project. http://www.centsproject.ie/. Research Project (2019)

  35. INESC: INESC TEC. https://www.inesctec.pt/en#projects. Institutional Website, Nov 2011

  36. Johnson, E.: Touch display—a novel input/output device for computers. Electron. Lett. 1(8), 219 (1965). ISSN: 00135194. https://doi.org/10.1049/el:19650200

  37. Jouannic, A.: Could Home Energy Management Be the next Big Connected Home Opportunity? Public Blog, Aug 2017

    Google Scholar 

  38. Kathirgamanathan, A., et al.: Data-driven predictive control for unlocking building energy flexibility: a review. Renew. Sustain. Energy Rev. 135, 110120 (2021). ISSN: 1364-0321. https://doi.org/10.1016/j.rser.2020.110120., https://www.sciencedirect.com/science/article/pii/S1364032120304111

  39. Leitao, J. et al.: A survey on home energy management. IEEE Access 8, 5699–5722 (2020). ISSN: 2169-3536. https://doi.org/10.1109/ACCESS.2019.2963502

  40. Liang, D., et al.: Scientific big data and digital earth. Chin. Sci. Bull. 59(12), 1047–1054 (2014). ISSN: 0023-074X. https://doi.org/10.1360/972013-1054

  41. Lin, C.-M. et al.: Applying the Naïve Bayes Classifier to HVAC Energy Prediction Using Hourly Data. Microsystem Technology (June 2019). ISSN:0946-7076, 1432-1858. https://doi.org/10.1007/s00542-019-04479-z

  42. Lobaccaro, G., Carlucci, S., Löfström, E.: A review of systems and technologies for smart homes and smart grids. Energies 9(5), 348 (2016). ISSN: 1996-1073. https://doi.org/10.3390/en9050348

  43. Manhique, M., Kouta, R.: Energy inclusion in Mozambique: an approach to community energy. In: 2021 IEEE International Humanitarian. IEEE, Dec 2021

    Google Scholar 

  44. Marikyan, D., Papagiannidis, S., Alamanos, E.: A systematic review of the smart home literature: a user perspective. Technol. Forecasting Soc. Change 138, pp. 139–154 (Jan 2019). ISSN: 0040-1625. https://doi.org/10.1016/j.techfore.2018.08.015

  45. McLoughlin, F., Duffy, A., Conlon, M.: Characterising domestic electricity consumption patterns by dwelling and occupant socio-economic variables: an Irish case study. Energy Build. 48, 240–248 (2012)

    Article  Google Scholar 

  46. McLoughlin, F., Duffy, A., Conlon, M.: Evaluation of time series techniques to characterise domestic electricity demand. Energy 50, 120–130 (2013). ISSN: 0360-5442

    Google Scholar 

  47. Motlagh, O., Berry, A., O’Neil, L.: Clustering of residential electricity customers using load time series. Appl. Energy 237, 11–24 (2019). ISSN: 0306-2619. https://doi.org/10.1016/j.apenergy.2018.12.063., https://bit.ly/31CJlvN

  48. mSemicon: mSemicon. https://www.msemicon.com/en-GB/

  49. MySmartHome: Smart Home Technology in 1966. https://bit.ly/3qqL8yA. Institutional, Oct 2021

  50. NUIG: NUI Galway. http://www.nuigalway.ie/

  51. O’Regan, B., et al.: BIMcpd: a combined toolkit for constraint checking, performance evaluation and data management in building renovation projects. Proceedings 65(1), 32 (2021). ISSN: 2504-3900. https://doi.org/10.3390/proceedings2020065032

  52. Oliveira, M.: Dark Data—Why You Need to Know About It (SaaSholic). https://bit.ly/3HnElM0. Blog, Nov 2021

  53. Paatero, J.V., Lund, P.D.: A model for generating household electricity load profiles. Int. J. Energy Res. 30(5), 273–290 (2006). https://doi.org/10.1002/er.1136

    Article  Google Scholar 

  54. Panimalar, A., Shree, V., Kathrine, V.: The 17 V’s of big data. IRJET, 5. E-ISSN: 2395-0056 04.09 (Sept 2017), ISSN: p-ISSN: 2395-0072

    Google Scholar 

  55. Ray, S.: Commonly Used Machine Learning Algorithms (with Python and R Codes). https://bit.ly/315PZeg. Blog, Sept 2017

  56. Reinsel, D., Gantz, J., Rydning, J.: The Digitization of the World—From Edge to Core. White Paper US44413318, p. 28. IDC, Framingham, USA, Nov 2018

    Google Scholar 

  57. Ricquebourg, V., et al.: The smart home concept: our immediate future. In: 2006 1ST IEEE International Conference on E-Learning in Industrial Electronics, pp. 23–28. IEEE, Hammamet, Tunisia, Dec 2006. ISBN: 1-4244-0323-5. https://doi.org/10.1109/ICELIE.2006.347206

  58. Ringwood, J.V., Bofelli, D., Murray, F.T.: Forecasting electricity demand on short, medium and long time scales using neural networks. J. Intell. Robot. Syst. 31(1), 129–147 (2001)

    Article  Google Scholar 

  59. Saberi, O., Menes, R.: Artificial Intelligence and the Future for Smart Homes. Executive Summary Note 78, p. 8. Internation Finance Corporation, Washington, D.C., USA, Feb 2020

    Google Scholar 

  60. Silva, F., O’Regan, B.: An Innovative Smart Grid Framework for Integration and Trading. ICSREE2021. ICSREE2021, Strasbourg, France, May 2021

    Google Scholar 

  61. Silva, F., et al.: System Integration and Data Models to Support Smart Grids Energy Trading. ECRES 2021. Istanbul, Turkey, Apr 2021. ISBN: 978-605-86911-9-3

    Google Scholar 

  62. SmartTech: Smart Tech—Alternative Energy Solutions

    Google Scholar 

  63. Spicer, D.: The Echo IV Home Computer. https://bit.ly/3Ep5mNg. Institutional, May 2016

  64. Swaminathan, S.: Logistic Regression. https://bit.ly/3xvZDm0, Mar 2018

  65. TUD: TU Dublin. Technological University Dublin. https://www.dit.ie/

  66. UCC: UCC. https://www.ucc.ie/en/

  67. UN: Building Sector Emissions Hit Record High, but Low-Carbon Pandemic Recovery Can Help Transform Sector. https://bit.ly/3xYK4Ub. Institutional Website, Dec 2020

  68. UN: Paris Agreement. Agreement, p. 27. United Nations, Paris, France (2015)

    Google Scholar 

  69. UN: Sustainable Development Goals (SDG). https://sdgs.un.org/goals. Institutional (2021)

  70. UNECE: Sustainable Smart Cities—UNECE. https://bit.ly/3GhRAfR. Institutional Website (2021)

  71. UNFCCC: United Nations Framework Convention on Climate Change. Framework Convention. United Nations Framework Convention on Climate Change, p. 33, Geneva, Switzerland (1992)

    Google Scholar 

  72. W3.org: Tim Berners-Lee-Biography. https://bit.ly/3ou3oFG (2001)

  73. Zhong, S., Tam, K.-S.: A frequency domain approach to characterize and analyze load profiles. IEEE Trans. Power Syst. 27(2), 857–865 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge all the support of the Department of Business, Enterprise and Innovation, via its Disruptive Technologies Innovation Fund (DTIF) [14] which provided funding for the CENTS project under the Government of Ireland’s Project 2040 Plan [27].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian O’Regan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Regan, B., Silva, F., Carroll, P., Dubuisson, X., Lyons, P. (2022). Machine Learning for Green Smart Homes. In: Lahby, M., Al-Fuqaha, A., Maleh, Y. (eds) Computational Intelligence Techniques for Green Smart Cities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-96429-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96429-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96428-3

  • Online ISBN: 978-3-030-96429-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics