Skip to main content

Criteria for Borel-Cantelli Lemmas with Applications to Markov Chains and Dynamical Systems

  • Conference paper
  • First Online:
Séminaire de Probabilités LI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2301))

  • 382 Accesses

Abstract

Let (Xk) be a strictly stationary sequence of random variables with values in some Polish space E and common marginal μ, and (Ak)k>0 be a sequence of Borel sets in E. In this paper, we give some conditions on (Xk) and (Ak) under which the events {Xk ∈ Ak} satisfy the Borel-Cantelli (or strong Borel-Cantelli) property. In particular we prove that, if μ(limsupnAn) > 0, the Borel-Cantelli property holds for any absolutely regular sequence. In case where the Ak’s are nested, we show, on some examples, that a rate of convergence of the mixing coefficients is needed. Moreover we give extensions of these results to weaker notions of dependence, yielding applications to non necessarily irreducible Markov chains and dynamical systems. Finally, we show that some of our results are optimal in some sense by considering the case of Harris recurrent Markov chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Billingsley, Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics (John Wiley & Sons, Inc., New York, 1999). https://doi.org/10.1002/9780470316962. A Wiley-Interscience Publication

  2. E. Borel, Les probabilités denombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27, 247–271 (1909). https://doi.org/10.1007/BF03019651

    Article  Google Scholar 

  3. R.C. Bradley, Introduction to Strong Mixing Conditions, vol. 2 (Kendrick Press, Heber City, 2007)

    MATH  Google Scholar 

  4. T.K. Chandra, S. Ghosal, Some elementary strong laws of large numbers: a review, in Frontiers in Probability and Statistics (Calcutta, 1994/1995) (Narosa, New Delhi, 1998), pp. 61–81

    Google Scholar 

  5. N. Chernov, D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures. Israel J. Math. 122, 1–27 (2001). https://doi.org/10.1007/BF02809888

    Article  MathSciNet  Google Scholar 

  6. J.P. Conze, A. Raugi, Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains. ESAIM Probab. Stat. 7, 115–146 (2003). https://doi.org/10.1051/ps:2003003

    Article  MathSciNet  Google Scholar 

  7. J. Dedecker, C. Prieur, New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields 132(2), 203–236 (2005). https://doi.org/10.1007/s00440-004-0394-3

    Article  Google Scholar 

  8. J. Dedecker, E. Rio, On mean central limit theorems for stationary sequences. Ann. Inst. Henri Poincaré Probab. Stat. 44(4), 693–726 (2008). https://doi.org/10.1214/07-AIHP117

    Article  MathSciNet  Google Scholar 

  9. J. Dedecker, S. Gouëzel, F. Merlevède, Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains. Ann. Inst. Henri Poincaré Probab. Stat. 46(3), 796–821 (2010). https://doi.org/10.1214/09-AIHP343

    Article  MathSciNet  Google Scholar 

  10. J. Dedecker, H. Dehling, M.S. Taqqu, Weak convergence of the empirical process of intermittent maps in 𝕃2 under long-range dependence. Stoch. Dyn. 15(2), 1550,008, 29 (2015). https://doi.org/10.1142/S0219493715500082

  11. B. Delyon, Limit theorem for mixing processes. Technical Report 546, IRISA, Rennes 1 (1990)

    Google Scholar 

  12. P. Doukhan, P. Massart, E. Rio, The functional central limit theorem for strongly mixing processes. Ann. Inst. H. Poincaré Probab. Statist. 30(1), 63–82 (1994)

    MathSciNet  MATH  Google Scholar 

  13. P. Erdős, A. Rényi, On Cantor’s series with convergent \(\sum 1/q_{n}\). Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 2, 93–109 (1959)

    Google Scholar 

  14. N. Etemadi, Stability of sums of weighted nonnegative random variables. J. Multivar. Anal. 13(2), 361–365 (1983). https://doi.org/10.1016/0047-259X(83)90032-5

    Article  MathSciNet  Google Scholar 

  15. S. Gouëzel, A Borel-Cantelli lemma for intermittent interval maps. Nonlinearity 20(6), 1491–1497 (2007). https://doi.org/10.1088/0951-7715/20/6/010

    Article  MathSciNet  Google Scholar 

  16. N. Haydn, M. Nicol, T. Persson, S. Vaienti, A note on Borel-Cantelli lemmas for non-uniformly hyperbolic dynamical systems. Ergodic Theory Dynam. Systems 33(2), 475–498 (2013). https://doi.org/10.1017/S014338571100099X

    Article  MathSciNet  Google Scholar 

  17. M. Iosifescu, R. Theodorescu, Random Processes and Learning. Die Grundlehren der mathematischen Wissenschaften, Band 150 (Springer, New York, 1969)

    Google Scholar 

  18. D.H. Kim, The dynamical Borel-Cantelli lemma for interval maps. Discrete Contin. Dyn. Syst. 17(4), 891–900 (2007). https://doi.org/10.3934/dcds.2007.17.891

    Article  MathSciNet  Google Scholar 

  19. P. Lévy, Théorie de l’addition des variables aléatoires (Gauthier-Villars, Paris, 1937)

    MATH  Google Scholar 

  20. C. Liverani, B. Saussol, S. Vaienti, A probabilistic approach to intermittency. Ergodic Theory Dynam. Systems 19(3), 671–685 (1999). https://doi.org/10.1017/S0143385799133856

    Article  MathSciNet  Google Scholar 

  21. N. Luzia, A Borel-Cantelli lemma and its applications. Trans. Amer. Math. Soc. 366(1), 547–560 (2014). https://doi.org/10.1090/S0002-9947-2013-06028-X

    Article  MathSciNet  Google Scholar 

  22. E. Nummelin, General irreducible Markov chains and nonnegative operators, in Cambridge Tracts in Mathematics, vol. 83 (Cambridge University Press, Cambridge, 1984). https://doi.org/10.1017/CBO9780511526237

    Book  Google Scholar 

  23. W. Philipp, Some metrical theorems in number theory. Pacific J. Math. 20, 109–127 (1967)

    Article  MathSciNet  Google Scholar 

  24. E. Rio, Asymptotic theory of weakly dependent random processes, in Probability Theory and Stochastic Modelling, vol. 80 (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-662-54323-8. Translated from the 2000 French edition [ MR2117923]

  25. M. Rosenblatt, A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U.S.A. 42, 43–47 (1956). https://doi.org/10.1073/pnas.42.1.43

    Article  MathSciNet  Google Scholar 

  26. W.M. Schmidt, Diophantine approximation, in Lecture Notes in Mathematics, vol. 785 (Springer, Berlin, 1980)

    Google Scholar 

  27. D. Tasche, On the second Borel-Cantelli lemma for strongly mixing sequences of events. J. Appl. Probab. 34(2), 381–394 (1997). https://doi.org/10.2307/3215378

    Article  MathSciNet  Google Scholar 

  28. V.A. Volkonskiı̆, Y.A. Rozanov, Some limit theorems for random functions. I. Theor. Probability Appl. 4, 178–197 (1959). https://doi.org/10.1137/1104015

Download references

Acknowledgements

The authors are grateful to the referee for his careful reading of the manuscript and for his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Rio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dedecker, J., Merlevède, F., Rio, E. (2022). Criteria for Borel-Cantelli Lemmas with Applications to Markov Chains and Dynamical Systems. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités LI. Lecture Notes in Mathematics(), vol 2301. Springer, Cham. https://doi.org/10.1007/978-3-030-96409-2_7

Download citation

Publish with us

Policies and ethics