Skip to main content

Analysis of the Possibility of Detecting Inhomogeneous Metal Inclusions in Welded Joints of Rails Under Ultrasonic Control

  • Conference paper
  • First Online:
International Scientific Siberian Transport Forum TransSiberia - 2021 (TransSiberia 2021)

Abstract

External factors in the manufacture of welded rail joints have a significant impact on the quality of the welded joint, which leads to the formation of a defect in the form of the thermite metal typical crystal structure violation, followed by a rail welded joint fracture. The macrostructure of the metal surface in the defect zone “Inhomogeneous metal inclusions” contains looseness, slag and micropores accumulations. The defect, as a rule, is located in a plane running vertically along the center of the weld in the region of the base and the lower part of the rail web, perpendicular to the longitudinal axis of the rail. In the course of the research, an analysis of the possibility of detecting a defect in the form of “Inhomogeneous metal inclusions” was made by the ultrasonic method of testing using an ultrasonic flaw detector, for local testing and with phased arrays, during acceptance trial, as well as the possibility of detecting a defect by an ultrasonic testing method using a method different from the accepted. The results of experimental studies using capillary and magnetic particle inspection methods are presented to confirm and visualize a defect on a welded joint fragment, followed by the welded rail joint fragments’ macrostructure and microstructure studies in the place of an internal defect and in a defect-free area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dymkin, G.Y., Kurkov, A.V., Smorodinskii, Y.G., Shevelev, A.V.: On the sensitivity of eddy current testing of parts of railway rolling stock. Russ. J. Nondestruct. Test. 55(8), 610–616 (2019). https://doi.org/10.1134/S1061830919080059

    Article  Google Scholar 

  2. Dymkin, G.Y., Konshina, V.N.: Main provisions of GOST (Intergovernmental Standard) 33514–2015 “Railway-purpose production. Verification of nondestructive testing procedures.” Russ. J. Nondestruct. Test. 53(7), 539–543 (2017). https://doi.org/10.1134/S1061830917070063

    Article  Google Scholar 

  3. Hobbacher, A., Kassner, M.: On relation between fatigue properties of welded joints, quality criteria and groups in ISO 5817. Weld. World 56(11–12), 153–169 (2012). https://doi.org/10.1007/BF03321405

    Article  Google Scholar 

  4. Ignatev, M., Kazarinov, N., Petrov, Y.: Peridynamic modelling of the dynamic crack initiation. Proc. Struct. Integr. 28, 1650–1654 (2020)

    Google Scholar 

  5. Benin, A.V., Belishkina, T.A., Vyatkin, A.G.: Issues of standardizing requirements for resistance and strength of railroad automation and signaling systems used in high-speed railways versus external mechanical impact. Russ. Electr. Eng. 87(5), 292–296 (2016). https://doi.org/10.3103/S1068371216050047

    Article  Google Scholar 

  6. Boronenko, Yu.P., Rahimov, R.V., Lafta, W.M., Dmitriev, S.V., Belyankin, A.V., Sergeev, D.A.: Continuous monitoring of the wheel-rail contact vertical forces by using a variable measurement scale. 2020 Joint Rail Conference, JRC 2020 (2020)

    Google Scholar 

  7. Boronenko, Y.P., Povolotskaia, G.A., Rahimov, R.V., Zhitkov, Y.B.: Diagnostics of freight cars using on-track measurements. In: Klomp, M., Bruzelius, F., Nielsen, J., Hillemyr, A. (eds.) IAVSD 2019. LNME, pp. 164–169. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38077-9_20

    Chapter  Google Scholar 

  8. Li, C., Luo, S., Cole, C., Spiryagin, M.: Evaluation of primary suspension benefits for heavy haul wagons Tiedao Xuebao. J. China Railw. Soc. 40(8), 52–59 (2018). https://doi.org/10.3969/j.issn.1001-8360.2018.08.007

    Article  Google Scholar 

  9. Kulikov, M.Y., Sheptunov, S.A., Evseev, D.G., Kuzyutin, A.S.: Development of the concept of the predictive model of freight cars transportation in the planned repair. In: Conference: 2018 IEEE International Conference “Quality Management, Transport and Information Security, Information Technologies” (IT&QM&IS) (2018). https://doi.org/10.1109/ITMQIS.2018.8525038

  10. Dymkin, G.Ya.: Regulations and requirements for nondestructive testing at Russian Railroads. In: 11th European Conference on Non-destructive Testing (ECNDT 2014). Proceedings of a meeting held 6–10 October 2014, Prague, Czech Republic. https://www.ndt.net/events/ECNDT2014/app/content/Paper/386_Dymkin.pdf

  11. Gordeeva, L.F., Prokhorovich, V.E., Bychenok, V.A., Alifanova, I.E.: Development of an automated system for ultrasonic testing of products obtained by additive manufacturing processes. J. Phys. Confe. Ser. 1636(1), 012003 (2020). https://doi.org/10.1088/1742-6596/1636/1/012003

    Article  Google Scholar 

  12. Pilyugin, S.O., Lunin, V.P.: Determining the probability of detecting flaws in weld joints by phased-array ultrasonic testing. Rus. J. Nondestruct. Test. 52(6), 332–338 (2019). https://doi.org/10.1134/S1061830916060085

    Article  Google Scholar 

  13. Daniel, D., Radoslav, K., Miloš, M.: Ultrasonic testing of girth welded joint with TOFD and phased array. Manufact. Tech. 14(3), 281–286 (2014). https://doi.org/10.21062/ujep/x.2014/a/1213-2489/MT/14/3/281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikolaev, S., Benin, A. (2022). Analysis of the Possibility of Detecting Inhomogeneous Metal Inclusions in Welded Joints of Rails Under Ultrasonic Control. In: Manakov, A., Edigarian, A. (eds) International Scientific Siberian Transport Forum TransSiberia - 2021. TransSiberia 2021. Lecture Notes in Networks and Systems, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-030-96380-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96380-4_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96379-8

  • Online ISBN: 978-3-030-96380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics