Skip to main content

Features of Structure Formation of Rail Steel with Internal Cracks in Long-Term Operation

  • Conference paper
  • First Online:
International Scientific Siberian Transport Forum TransSiberia - 2021 (TransSiberia 2021)

Abstract

The modern understanding of the strength of bodies with cracks under statically and cyclically varying loads makes it possible to calculate the residual life of a structure, however, the specific conditions of deformation of a railway rail require the development of new methods for studying the initiation and development of fatigue cracks. herefore, the analysis of the laws of crack development is of great importance. Cracks begin to develop long before complete failure during fatigue, plastic, and even brittle failure. The duration of the destruction process, i.e. crack growth until complete destruction takes up a significant part of the “life” of the part, reaching 90% and more. The main thing during the operation of a part is not the presence of a crack, but the rate of its growth. In this work, a microstructural analysis of the cross-sectional surface of five rails with internal cracks, longitudinal and transverse, is carried out. Rail samples taken out of operation after many years of service. Fractographic analysis of the crack surface and the surrounding material indicates a significant degradation of the physical and mechanical properties of the rail steel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dymkin, G.Y., Ostanin, I.A.: On the development of ultrasound control techniques for non-standard welding compounds. Weld. Diagnost. 1, 18–23 (2021). https://doi.org/10.52177/2071-5234_2021_01_18

    Article  Google Scholar 

  2. Smirnov, V.I., Vidyushenkov, S.A., Maier, S.S.: Fatigue fracture of the beam with an internal transverse crack under multicycle loading. Sci. Tech. J. Bull. Civ. Eng. 17(2), 75–81 (2020). https://doi.org/10.23968/1999-5571-2020-17-2-75-81

    Article  Google Scholar 

  3. Dymkin, G., Etingen, I., Shelukhin, A.: Automated ultrasonic inspection of rails during production. JSC Res. Inst. Bridges Nondes. Test. 23(3), 73–76 (2020). https://doi.org/10.12737/1609-3178-2020-73-76

    Article  Google Scholar 

  4. Smirnov, V.I., Vidyushenkov, S.A., Bushuev, N.S.: Stress-strain state of elastic base under circular foundation. In: Mangushev, R., Zhussupbekov, A., Iwasaki, Y., Sakharov, I. (eds.) Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations, pp. 341–346. CRC Press, Boca Raton (2019). https://doi.org/10.1201/9780429058882-66

    Chapter  Google Scholar 

  5. Polevoy, E.V., Dobuzhskaya, A.B., Temlyantsev, M.V.: Influence of speed of cooling on formation of structure of a rail steel microalloyed by vanadium and niobium. J. Bull. PNRPU. Mech. Eng. Mat. Sci. 18(4), 7–20 (2016). https://doi.org/10.15593/2224-9877/2016.4.01

  6. Markov, A.A., Ivanov, G.A.: Investigation of the detection method for longitudinal cracks in the head of rail tracks. J. Izhevsk St. Tech. Univ. 22(4), 46–56 (2019). https://doi.org/10.22213/2413-1172-2019-4-46-56

    Article  Google Scholar 

  7. Petrov, Y., Kazarinov, N., Bratov, V.: Dynamic crack propagation: quasistatic and impact loading. Proc. Struct. Integr. 2, 389–394 (2016). https://doi.org/10.1016/j.prostr.2016.06.050

    Article  Google Scholar 

  8. Atroshenko, S.A., Maier, S.S., Smirnov, V.I.: Rail steel fracture analysis under conditions of railroad switch. J. Solid State Phys. 10(101569), 1573–1577 (2020). https://doi.org/10.21883/FTT.2020.10.49898.094

    Article  Google Scholar 

  9. Spivak, L.V., Shchepina, N.E.: Polymorphic transformations in iron and zirconium. J. Appl. Phys. 65(7), 1100–1105 (2020)

    Google Scholar 

  10. Loktev, A., Fazilova, Z., Gridasova, E.: The life cycle assessment of the used rails according to the results of cyclic high-frequency tests. IOP Conf. Ser. Mater. Sci. Eng. 862(2), 022022 (2020). https://doi.org/10.1088/1757-899X/862/2/022022

    Article  Google Scholar 

  11. Loktev, A.A., Fazilova, Z.T., Zaytsev, A.A., Borisova, N.L.: Analytical modeling of the dynamic behavior of the railway track on areas of variable stiffness. In: Petriaev, A., Konon, A. (eds.) Transportation Soil Engineering in Cold Regions, Volume 1. LNCE, vol. 49, pp. 165–172. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0450-1_17

    Chapter  Google Scholar 

  12. Bratov, V., Krivtsov, A.: Analysis of energy required for initiation of inclined crack under uniaxial compression and mixed loading. Eng. Fract. Mech. 216, 106518 (2019). https://doi.org/10.1016/j.engfracmech.2019.106518

    Article  Google Scholar 

  13. Shur, E.A., Borts, A.I., Bazanova, L.V., Scherbakova, O.O., Shkalei, I.V.: Determination of the fatigue crack growth rate and time in rails using fatigue macrolines. J. Rus. Metal. (Metally) 4, 477–482 (2020). https://doi.org/10.31044/1814-4632-2019-6-39-46

    Article  Google Scholar 

  14. Dymkin, G.Y., Shelukhin, A.A., Anisimov, V.N.: Improving procedures for ultrasonic pulse-echo testing of rails in production. Rus. J. Nondest. Test. 8, 14–23 (2019). https://doi.org/10.1134/S0130308219080025

    Article  Google Scholar 

  15. Dymkin, G.Y., et al.: On the sensitivity of eddy current testing of parts of railway rolling stock. Rus. J. Nondest. Test. 8, 48–53 (2019). https://doi.org/10.1134/S0130308219080062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Atroshenko, S., Smirnov, V., Maier, S. (2022). Features of Structure Formation of Rail Steel with Internal Cracks in Long-Term Operation. In: Manakov, A., Edigarian, A. (eds) International Scientific Siberian Transport Forum TransSiberia - 2021. TransSiberia 2021. Lecture Notes in Networks and Systems, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-030-96380-4_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96380-4_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96379-8

  • Online ISBN: 978-3-030-96380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics