Skip to main content

Modeling of Dynamic Crack Propagation Under Quasistatic Loading

  • Conference paper
  • First Online:
International Scientific Siberian Transport Forum TransSiberia - 2021 (TransSiberia 2021)

Abstract

The paper considers a numerical study of the dynamic crack propagation in samples subjected to static loading. Experiments on dynamic crack propagation in samples of PMMA (polymethylmethacrylate) due to quasistatic stretching were simulated. The position of the crack tip and the current crack velocity were recorded in the experiments. The study showed that the ultimate crack velocity was significantly lower than the theoretically evaluated limiting value. An unstable behavior of the crack velocity was also found: the crack velocity oscillations were observed, with the amplitude of the oscillations increasing as the crack grows. In order to simulate the experiments, a numerical scheme was developed. The scheme is based on the finite element method and the structural-temporal fracture criterion. According to this criterion, the fracture scale level is set (namely, the minimum value of the crack advancement is introduced), and the characteristic fracture time is used – the incubation time parameter, which is considered to be a material parameter. This approach provides possibility to numerically obtain the discussed experimental results including considerable crack velocity oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharon, E., Fineberg, J.: Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397, 333–335 (1999). https://doi.org/10.1038/16891

    Article  Google Scholar 

  2. Zhuang, Z., O’Donoghue, P.E.: The recent development of analysis methodology for rapid crack propagation and arrest in gas pipelines. Int. J. Fract. 101, 269–290 (2000). https://doi.org/10.1023/A:10076143

    Article  Google Scholar 

  3. Kanninen, M.F., O’Donoghue, P.: Research challenges arising from current and potential applications of dynamic fracture mechanics to the integrity of engineering structures. Int. J. Solids Struct. 32(17/18), 2423–2445 (1995). https://doi.org/10.1016/0020-7683(94)00275-2

    Article  MATH  Google Scholar 

  4. Shen, W., Zhao, Y.-P.: Combined effect of pressure and shear stress on penny-shaped fluid-driven cracks. J. Appl. Mech. 85(3), 031003 (2017). https://doi.org/10.1115/1.4038719

    Article  Google Scholar 

  5. Broberg, K.B.: On the speed of a Brittle Crack. J. Appl. Mech. 31, 546–547 (1964)

    Article  Google Scholar 

  6. Kostrov, B.V.: Crack propagation at variable velocity. Int. J. Fract. 11(1), 47–56 (1975)

    Article  MathSciNet  Google Scholar 

  7. Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511546761

  8. Slepyan, L.I.: Principle of maximum energy dissipation rate in crack dynamics. J. Mech. Phys. Solids 41, 1019–1033 (1993). https://doi.org/10.1016/0022-5096(93)90053-I

    Article  MATH  Google Scholar 

  9. Achenbach, J.D., Bazant, Z.P.: Elastodynamic near-tip stress and displacement fields for rapidly propagating crack in orthotropic media. J. Appl. Mech. 42, 183–189 (1975). https://doi.org/10.1115/1.3423513

    Article  MATH  Google Scholar 

  10. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: III. On steady state crack propagation and crack brunching. Int. J. Fract. 26, 141–154 (1984). https://doi.org/10.1007/BF01157550

    Article  Google Scholar 

  11. Fineberg, J., Gross, S.P., Marder, M., Swinney, H.L.: Instability in the propagation of fast cracks. Phys. Rev. B 45(10), 5146–5154 (1992). https://doi.org/10.1103/PhysRevB.45.5146

    Article  Google Scholar 

  12. Kobayashi, T., Dally, J.W.: Relation between crack velocity and the stress intensity factor in birefringent polymers. Fast fracture and crack arrest. ASTM STP 627, 257–273 (1977). https://doi.org/10.1520/STP27392S

    Article  Google Scholar 

  13. Kalthoff, J.F., Beinert, J., Winkler, S.: Measurements of dynamic stress intensity factors for fast running and arresting cracks in double-cantilever-beam specimens. ASTM STP 627, 161–176 (1977). https://doi.org/10.1520/STP27387S

    Article  Google Scholar 

  14. Zehnder, A.T., Rosakis, A.J.: Dynamic fracture initiation and propagation in 4340 steel under impact loading. Int. J. Fract. 43, 271–285 (1990). https://doi.org/10.1007/BF00035087

    Article  Google Scholar 

  15. Maigre, H., Rittel, D.: Dynamic fracture detection using the force-displacement reciprocity: application to the compact compression specimen. Int. J. Fract. 73, 67–79 (1995). https://doi.org/10.1007/BF00039852

    Article  Google Scholar 

  16. Kalthoff, J.F., Shockey, D.A.: Instability of cracks under impulse loads. J. Appl. Phys. 48, 986–993 (1977). https://doi.org/10.1063/1.323720

    Article  Google Scholar 

  17. Kalthoff, J.F.: Modes of dynamic shear failure in solids. Int. J. Fract. 101, 1–31 (2000). https://doi.org/10.1023/A:1007647800529

    Article  Google Scholar 

  18. Dally, J.W., Fourney, W.L., Irwin, G.R.: On the uniqueness of the stress intensity factor – crack velocity relationship. Int. J. Fract. 27, 159–168 (1985). https://doi.org/10.1007/BF00017965

    Article  Google Scholar 

  19. Kalthoff, J.F.: On Some Current Problems in Experimental Fracture Dynamics, Workshop on Dynamic Fracture. California Institute of Technology, pp. 11–25 (1983)

    Google Scholar 

  20. Irwin, G.: Analysis of stresses and strains near the end of a Crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Article  Google Scholar 

  21. Rosakis, A.J., Ravichandran, G.: Dynamic failure mechanics. J. Mech. Mater. Struct. 37, 331–348 (2000). https://doi.org/10.1016/S0020-7683(99)00097-9

    Article  MATH  Google Scholar 

  22. Shockey, D.A., Erlich, D.C., Kathoff, J.F., Homma, H.: Short-pulse fracture mechanics. Eng. Fract. Mech. 23(1), 311–319 (1986). https://doi.org/10.1016/0013-7944(86)90195-5

    Article  Google Scholar 

  23. Xu, X., Needleman, A.: Numerical simulations of dynamic crack growth along an interface. Int. J. Fract. 74, 289–324 (1995). https://doi.org/10.1007/BF00035845

    Article  Google Scholar 

  24. Petrov, Y.V., Utkin, A.A.: Dependence of the dynamic strength on loading rate. Sov. Mater. Sci. 25(2), 153–156 (1989). https://doi.org/10.1007/BF00780499

    Article  Google Scholar 

  25. Petrov, Y.V.: On “quantum” nature of dynamic failure of brittle media. Dokl. Akad. Nauk. SSSR 321(1), 66–68 (1991)

    Google Scholar 

  26. Bratov, V.: Incubation time fracture criterion for FEM simulations. Acta. Mech. Sin. 27(4), 541–549 (2011). https://doi.org/10.1007/s10409-011-0484-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grants 19-31-60037 and 20-01-00291).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazarinov, N., Petrov, Y., Benin, A. (2022). Modeling of Dynamic Crack Propagation Under Quasistatic Loading. In: Manakov, A., Edigarian, A. (eds) International Scientific Siberian Transport Forum TransSiberia - 2021. TransSiberia 2021. Lecture Notes in Networks and Systems, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-030-96380-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96380-4_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96379-8

  • Online ISBN: 978-3-030-96380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics