Skip to main content

Breaking the Ice Sheet and Extending Navigation with Hovercraft Technology

  • Conference paper
  • First Online:
International Scientific Siberian Transport Forum TransSiberia - 2021 (TransSiberia 2021)

Abstract

In the 1970s, observations and tests of the first self-propelled and non-propelled hovercrafts destroying ice cover were carried out. Model and full-scale experiments were conducted abroad (USA, Canada, Finland, etc.) and in Russia, which confirmed high efficiency of using new hovercraft technologies.The article provides justifications for the applicability of these technologies in different operational situations, based on the authors' research. The main purpose of the materials presented in the article is to show various possibilities of using hovercraft technologies in ice engineering operations. Two methods of ice cover failure by hovercrafts are discussed – the pressure and resonant methods. Both methods have high efficiency in terms of ice failure (including energy and operating costs). The expediency of using these methods for various ice operations is given: when creating an ice channel, servicing ships in freezing ports and harbors, during ship withdrawal out of ice captivity, when surrounding ships and structures, placing ships on winter lay-up, destroying the reservoir ice cover. It is also possible to use hovercraft technologies as ferries for transporting heavyweights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erceg, S., Ehlers, S.: Semi-empirical level ice resistance prediction methods. Ship Technol. Res. 64(1), 1–14 (2017). https://doi.org/10.1080/09377255.2016.1277839

    Article  Google Scholar 

  2. Fu, S., Zhang, D., Montewka, J., Yan, X., et al.: Towards a probabilistic model for predicting ship besetting in ice in Arctic waters. Reliab. Eng. Syst. Saf. 155, 124–136 (2016). https://doi.org/10.1016/j.ress.2016.06.010

    Article  Google Scholar 

  3. Huang, E., Li, M., Igrec, B., et al.: Simulation of a ship advancing in floating ice floes. In: Proceedings of POAC-2019 2019:13 p. (2019)

    Google Scholar 

  4. Lobanov, V.A.: Ice propulsion ability of vessels wit nontraditional form. Russ. J. Water Transp. 65, 143–156 (2020). https://doi.org/10.37890/jwt.vi65.136

  5. Lobanov, V.A.: Visualization of CAE-solutions of partial problems of ice navigation. Icebreaker sitting and propulsion ability. Sci. Visual. 12(1), 48–60 (2020). https://doi.org/10.26583/SV.12.1.04

  6. Lobanov, V.A., Pershina, V.S.: Visualization of CAE-solutions of partial problems of ice navigation vessels passing. Sci. Visual. 10(1), 89–98 (2018). https://doi.org/10.26583/sv.10.1.07

  7. Zuev, V.A., Semenova, N.M.: Model tests of icebreaking aircushion platforms on quiet water. Tr. St. Petersburg University of Water Communications. St. Petersburg 1(3), 125–131 (2012)

    Google Scholar 

  8. Zuev, V.A., Gramuzov, E.M.: Actual problems of ship ice engineering/fundamental research of ocean engineering and marine infrastructure. Theory. Experiment. Practice. Int. Sci. Tech. Conf. Komsomolsk-on-Amur 2015, 12–15 (2015)

    Google Scholar 

  9. Li, F., Montewka, J., Goerlandt, F., Kujala, P.: A probabilistic model of ship performance in ice based on full-scale data. In: Proceedings of ICTIS-2017 (2017). https://doi.org/10.1109/ICTIS.2017.80478528

  10. Kozin, V.M.: Experimental and Theoretical Dependency Studies of the Propagation Parameters of Flexural-Gravity Waves on a Floating Plate, p. p222. SB RAS, Novosibirsk (2016)

    Google Scholar 

  11. Zuev, V.A.: New technologies of ice destruction and hovercraft navigation prolongation. Pr. Central Research Institute named after academician A. N. Krylov"Marine ice technology issues (318), pp. 78–96 (2007)

    Google Scholar 

  12. Mard, A.: Experimental study of the icebreaking process of an icebreaking trimaran. In: Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC Ser. “Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Conditions, POAC 2015” (2015)

    Google Scholar 

  13. Kozin, V.M.: The Ice-Breaking Capacity of Flexural-Gravity Waves Produced by Motion of Objects, 191 p. Dalnauka, Vladivostok (2005)

    Google Scholar 

  14. Hu, J., Zhou, L.: Further study on level ice resistance and channel resistance for an icebreaking vessel. Int. J. Naval Arch. Ocean Eng. 8(2), 169–176 (2016). https://doi.org/10.1016/j.ijnaoe.2016.01.004/

    Article  Google Scholar 

  15. Montewka, J., Goerlandt, F., Kujala, P., Lensu, M.: Towards probabilistic models for the prediction of a ship performance in dynamic ice. Cold Reg. Sci. Technol. 112, 14–28 (2014). https://doi.org/10.1016/j.coldregions.2014.12.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuev, V., Larina, E., Ronnov, E., Burmistrov, E. (2022). Breaking the Ice Sheet and Extending Navigation with Hovercraft Technology. In: Manakov, A., Edigarian, A. (eds) International Scientific Siberian Transport Forum TransSiberia - 2021. TransSiberia 2021. Lecture Notes in Networks and Systems, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-030-96380-4_130

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96380-4_130

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96379-8

  • Online ISBN: 978-3-030-96380-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics