Skip to main content

Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia

  • Chapter
  • First Online:
Cancer Immunotherapies

Abstract

Acute myeloid leukemia (AML) is an aggressive, clonally heterogeneous, myeloid malignancy, with a 5-year overall survival of approximately 27%. It constitutes the most common acute leukemia in adults, with an incidence of 3–5 cases per 100,000 in the United States. Despite great advances in understanding the molecular mechanisms underpinning leukemogenesis, the past several decades had seen little change to the backbone of therapy, comprised of an anthracycline-based induction regimen for those who are fit enough to receive it, followed by risk-stratified post-remission therapy with consolidation cytarabine or allogeneic stem cell transplantation (allo-SCT). Allo-SCT is the most fundamental form of immunotherapy in which donor cytotoxic T and NK cells recognize and eradicate residual AML in the graft-versus-leukemia (GvL) effect. Building on that, several alternative or synergistic approaches to exploit both self and foreign immunity against AML have been developed. Checkpoint inhibitors, for example, CTLA-4 inhibitors, PD-1 inhibitors, and PD-L1 inhibitors block proteins found on T cells or cancer cells that stop the immune system from attacking the cancer cells. They have been used with limited success in both the AML relapsed/refractory (R/R) and post SCT settings. AML tumor mutational burden is low compared to solid tumors and thus, it is less likely to generate neoantigens and respond to antibody-mediated checkpoint blockade that has shown unprecedented results in solid tumors. Therefore, alternative therapeutic strategies that work independently of the T cell receptor (TCR) specificity have been developed. They include bispecific antibodies, which recruit T cells through CD3 engagement, and in AML have shown an overall response rate ranging between 14 and 30% in early phase trials. Chimeric Antigen Receptor (CAR) T cell therapy is a type of treatment in which T cells are genetically engineered to produce a recombinant receptor that redirects the specificity and function of T lymphocytes. However, lack of cell surface targets exclusively expressed on AML cells including Leukemic Stem Cells (LSCs) combined with clonal heterogeneity represents the biggest challenge in developing CAR therapy for AML. Antibody–Drug Conjugates (ADC) constitute the only FDA-approved immunotherapy to treat AML with Gemtuzumab Ozogamicin, a CD33-specific ADC used in CEBPα-mutated AML. The identification of additional cell surface targets is critical for the development of other ADC’s potentially useful in the induction and maintenance regimens, given the ease at which these reagents can be generated and managed. Here, we will review those immune-based therapeutic interventions and highlight active areas of research investigations toward fulfillment of the great promise of immunotherapy to AML.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dores GM et al (2012) Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 119(1):34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shah A et al (2013) Survival and cure of acute myeloid leukaemia in England, 1971–2006: a population-based study. Br J Haematol 162(4):509–516

    Article  PubMed  Google Scholar 

  3. Yates JW et al (1973) Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep 57(4):485–488

    CAS  PubMed  Google Scholar 

  4. Santos GW et al (1983) Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med 309(22):1347–1353

    Article  CAS  PubMed  Google Scholar 

  5. Weiden PL et al (1979) Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med 300(19):1068–1073

    Article  CAS  PubMed  Google Scholar 

  6. Kolb H et al (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76(12):2462–2465

    Article  CAS  PubMed  Google Scholar 

  7. Schiller GJ (2013) High-risk acute myelogenous leukemia: treatment today … and tomorrow. Hematology Am Soc Hematol Educ Program 2013:201–208

    Article  PubMed  Google Scholar 

  8. Hodi FS et al (2010) Improved survival with Ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolchok JD (2015) PD-1 blockers. Cell 162(5):937

    Article  CAS  PubMed  Google Scholar 

  10. Zhang L, Gajewski TF, Kline J (2009) PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 114(8):1545–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daver N et al (2016) Defining the immune checkpoint landscape in patients (pts) with Acute Myeloid Leukemia (AML). Blood 128(22):2900–2900

    Article  Google Scholar 

  12. Chen C et al (2020) Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol 13(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Berger R et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051

    Article  CAS  PubMed  Google Scholar 

  14. Davids MS et al (2016) Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med 375(2):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reville PK et al (2021) Nivolumab maintenance in high-risk acute myeloid leukemia patients: a single-arm, open-label, phase II study. Blood Cancer J 11(3):60

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ravandi F et al (2019) Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high-risk myelodysplastic syndrome: a single-arm, phase 2 study. Lancet Haematol 6(9):e480–e488

    Article  PubMed  PubMed Central  Google Scholar 

  17. Daver N et al (2019) Efficacy, safety, and biomarkers of response to azacitidine and Nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase II study. Cancer Discov 9(3):370

    Article  CAS  PubMed  Google Scholar 

  18. Acharya N, Sabatos-Peyton C, Anderson AC (2020) Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer 8(1)

    Google Scholar 

  19. Jan M et al (2011) Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci U S A 108(12):5009–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haubner S et al (2019) Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 33(1):64–74

    Article  CAS  PubMed  Google Scholar 

  21. Asayama T et al (2017) Functional expression of Tim-3 on blasts and clinical impact of its ligand galectin-9 in myelodysplastic syndromes. Oncotarget 8(51):88904–88917

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borate U et al (2020) Anti-TIM-3 antibody MBG453 in combination with hypomethylating agents in patients with high-risk myelodysplastic syndrome and acute myeloid leukemia: a phase 1 study. In: Abstract presented at: the 25th European Hematology Association Congress

    Google Scholar 

  23. Chao MP et al (2019) Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front Oncol 9:1380

    Article  PubMed  Google Scholar 

  24. Molica M et al (2021) TP53 mutations in acute myeloid leukemia: still a daunting challenge? Front Oncol 10(3368)

    Google Scholar 

  25. Sallman DA et al (2020) Tolerability and efficacy of the first-in-class anti-CD47 antibody magrolimab combined with azacitidine in MDS and AML patients: phase Ib results. J Clin Oncol 38(15_suppl):7507–7507

    Google Scholar 

  26. Papaemmanuil E et al (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rizvi NA et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–128

    Google Scholar 

  28. McGranahan N et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351(6280):1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Allen EM et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lawrence MS et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vago L et al (2009) Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 361(5):478–488

    Article  CAS  PubMed  Google Scholar 

  33. Huehls AM, Coupet TA, Sentman CL (2015) Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 93(3):290–296

    Article  CAS  PubMed  Google Scholar 

  34. Ross SL et al (2017) Bispecific T cell engager (BiTE(R)) antibody constructs can mediate bystander tumor cell killing. PLoS One. 12(8):e0183390

    Google Scholar 

  35. Guy DG, Uy GL (2018) Bispecific antibodies for the treatment of acute myeloid leukemia. Curr Hematol Malig Rep 13(6):417–425

    Article  PubMed  PubMed Central  Google Scholar 

  36. Laszlo GS et al (2014) Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood 123(4):554–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ravandi F et al (2020) Updated results from phase I dose-escalation study of AMG 330, a bispecific T-cell engager molecule, in patients with relapsed/refractory acute myeloid leukemia (R/R AML). J Clin Oncol 38(15_suppl):7508–7508

    Google Scholar 

  38. Krupka C et al (2014) CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood 123(3):356–365

    Article  CAS  PubMed  Google Scholar 

  39. Friedrich M et al (2014) Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia. Mol Cancer Ther 13(6):1549–1557

    Article  CAS  PubMed  Google Scholar 

  40. Jitschin R et al (2018) CD33/CD3-bispecific T-cell engaging (BiTE(R)) antibody construct targets monocytic AML myeloid-derived suppressor cells. J Immunother Cancer 6(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  41. Herrmann M et al (2018) Bifunctional PD-1 x alphaCD3 x alphaCD33 fusion protein reverses adaptive immune escape in acute myeloid leukemia. Blood 132(23):2484–2494

    Article  CAS  PubMed  Google Scholar 

  42. Chichili GR et al (2015) A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med 7(289):289ra82

    Google Scholar 

  43. Cruz NM et al (2018) Selection and characterization of antibody clones are critical for accurate flow cytometry-based monitoring of CD123 in acute myeloid leukemia. Leuk Lymphoma 59(4):978–982

    Article  CAS  PubMed  Google Scholar 

  44. Jordan CT et al (2000) The IL-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14(10):1777–1784

    Article  CAS  PubMed  Google Scholar 

  45. Testa U et al (2002) Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 100(8):2980–2988

    Article  CAS  PubMed  Google Scholar 

  46. Muñoz L et al (2001) IL-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica 86(12):1261–1269

    PubMed  Google Scholar 

  47. Godwin JE et al (2019) Flotetuzumab (FLZ), an investigational CD123 x CD3 bispecific Dart® protein-induced clustering of CD3+ T cells and CD123+ AML cells in bone marrow biopsies is associated with response to treatment in primary refractory AML patients. Blood 134(Supplement_1):1410–1410

    Google Scholar 

  48. Flotetuzumab in Primary Induction Failure (PIF) or Early Relapse (ER) Acute Myeloid Leukemia (AML)

    Google Scholar 

  49. Vadakekolathu J et al (2020) TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv 4(20):5011–5024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aldoss I et al (2020) Flotetuzumab as salvage therapy for primary induction failure and early relapse acute myeloid leukemia. Blood 136(Supplement 1):16–18

    Article  Google Scholar 

  51. Braciak TA et al (2018) Dual-targeting triplebody 33–16–123 (SPM-2) mediates effective redirected lysis of primary blasts from patients with a broad range of AML subtypes in combination with natural killer cells. Oncoimmunology 7(9):e1472195

    Google Scholar 

  52. Chu SY et al (2014) Immunotherapy with long-lived anti-CD123 × anti-CD3 bispecific antibodies stimulates potent T cell-mediated killing of human AML cell lines and of CD123+ cells in monkeys: a potential therapy for acute myelogenous leukemia. Blood 124(21):2316–2316

    Article  Google Scholar 

  53. Ravandi F et al (2020) Complete responses in relapsed/refractory acute myeloid leukemia (AML) patients on a weekly dosing schedule of Vibecotamab (XmAb14045), a CD123 x CD3 T cell-engaging bispecific antibody; initial results of a phase 1 study. Blood 136(Supplement 1):4–5

    Article  Google Scholar 

  54. Hernandez-Hoyos G et al (2016) MOR209/ES414, a novel bispecific antibody targeting PSMA for the treatment of metastatic castration-resistant prostate cancer. Mol Cancer Ther 15(9):2155–2165

    Article  CAS  PubMed  Google Scholar 

  55. Comeau MR et al (2018) Abstract 1786: APVO436, a bispecific anti-CD123 x anti-CD3 ADAPTIR™ molecule for redirected T-cell cytotoxicity, induces potent T-cell activation, proliferation and cytotoxicity with limited cytokine release. Can Res 78(13 Supplement):1786

    Google Scholar 

  56. Study of APVO436 in Patients With AML or MDS

    Google Scholar 

  57. Morsink LM, Walter RB, Ossenkoppele GJ (2019) Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia. Blood Rev 34:26–33

    Article  CAS  PubMed  Google Scholar 

  58. Wang YY et al (2017) Low CLL-1 expression Is a novel adverse predictor in 123 patients with De Novo CD34(+) acute myeloid leukemia. Stem Cells Dev 26(20):1460–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Rhenen A et al (2007) Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia 21(8):1700–1707

    Article  PubMed  CAS  Google Scholar 

  60. Singer H et al (2010) Effective elimination of acute myeloid leukemic cells by recombinant bispecific antibody derivatives directed against CD33 and CD16. J Immunother 33(6):599–608

    Article  CAS  PubMed  Google Scholar 

  61. Gleason MK et al (2014) CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123(19):3016–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. GT Biopharma I (2021) GT biopharma announces interim GTB-3550 TRIKE™ monotherapy clinical trial results AT 2021 Raymond James human health innovation conference. Available from: https://www.gtbiopharma.com/news-media/press-releases/detail/225/gt-biopharma-announces-interim-gtb-3550-trike

  63. Majzner RG, Mackall CL (2019) Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med 25(9):1341–1355

    Article  CAS  PubMed  Google Scholar 

  64. Shah BD et al (2021) KTE-X19 anti-CD19 CAR T-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: ZUMA-3 phase 1 results. Blood 138(1):11–22

    Article  CAS  PubMed  Google Scholar 

  65. Jensen MC, Riddell SR (2015) Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol 33:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sadelain M, Riviere I, Riddell S (2017) Therapeutic T cell engineering. Nature 545(7655):423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhou G, Levitsky H (2012) Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol 2012:124187

    Google Scholar 

  68. Levine BL et al (2017) Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 4:92–101

    Article  CAS  PubMed  Google Scholar 

  69. Klebanoff CA et al (2005) Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol 26(2):111–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Epperly R, Gottschalk S, Velasquez MP (2020) A bump in the road: how the hostile AML microenvironment affects CAR T cell therapy. Front Oncol 10:262

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hartmann J et al (2017) Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 9(9):1183–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ritchie DS et al (2013) Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther 21(11):2122–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang QS et al (2015) Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 23(1):184–191

    Article  CAS  PubMed  Google Scholar 

  74. Tambaro FP et al (2021) Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia

    Google Scholar 

  75. Redman M et al (2016) What is CRISPR/Cas9? Arch Dis Child Educ Pract Ed 101(4):213–215

    Article  PubMed  PubMed Central  Google Scholar 

  76. Borot F et al (2019) Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies. Proc Natl Acad Sci U S A 116(24):11978–11987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rotiroti MC et al (2020) Targeting CD33 in chemoresistant AML patient-derived xenografts by CAR-CIK cells modified with an improved SB transposon system. Mol Ther 28(9):1974–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Loff S et al (2020) Rapidly switchable universal CAR-T cells for treatment of CD123-positive Leukemia. Mol Ther Oncolytics 17:408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang J et al (2018) CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol 11(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Sauer T et al (2021) CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood 138(4):318–330

    Article  CAS  PubMed  Google Scholar 

  81. Shrestha E et al (2020) Preclinical development of anti-FLT3 CAR-T therapy for the treatment of acute myeloid leukemia. Blood 136(Supplement 1):4–5

    Article  Google Scholar 

  82. Mardiana S, Gill S (2020) CAR T cells for acute myeloid Leukemia: state of the art and future directions. Front Oncol 10(697)

    Google Scholar 

  83. Study evaluating safety and efficacy of CAR-T cells targeting CD123 in patients with acute myelocytic Leukemia

    Google Scholar 

  84. Yao S et al (2019) Donor-derived CD123-targeted CAR T cell serves as a RIC regimen for haploidentical transplantation in a patient with FUS-ERG+ AML. Front Oncol 9:1358

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baumeister SH et al (2019) Phase I trial of autologous CAR T cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res 7(1):100–112

    Article  CAS  PubMed  Google Scholar 

  86. Cui Q et al (2021) CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J Hematol Oncol 14(1):82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Youn BS, Mantel C, Broxmeyer HE (2000) Chemokines, chemokine receptors and hematopoiesis. Immunol Rev 177:150–174

    Article  CAS  PubMed  Google Scholar 

  88. Tashiro H et al (2017) Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to C-type lectin-like molecule 1. Mol Ther 25(9):2202–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bu C et al (2020) Phase I clinical trial of autologous CLL1 CAR-T therapy for pediatric patients with relapsed and refractory acute myeloid leukemia. Blood 136(Supplement 1):13–13

    Article  Google Scholar 

  90. Liu F et al (2018) First-in-human CLL1-CD33 compound CAR T cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial. Blood 132:901

    Article  Google Scholar 

  91. Jetani H et al (2018) CAR T-cells targeting FLT3 have potent activity against FLT3(-)ITD(+) AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia 32(5):1168–1179

    Article  CAS  PubMed  Google Scholar 

  92. Thomas S, Prendergast GC (2016) Cancer vaccines: a brief overview. Methods Mol Biol 1403:755–761

    Article  PubMed  Google Scholar 

  93. Sugiyama H (2005) Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. Expert Rev Vaccines 4(4):503–512

    Article  CAS  PubMed  Google Scholar 

  94. Mailänder V et al (2004) Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematologic or renal toxicity. Leukemia 18(1):165–166

    Article  PubMed  Google Scholar 

  95. Di Stasi A et al (2015) Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol 6(36)

    Google Scholar 

  96. Tsuboi A et al (2012) Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia 26(6):1410–1413

    Article  CAS  PubMed  Google Scholar 

  97. Keilholz U et al (2009) A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113(26):6541–6548

    Article  CAS  PubMed  Google Scholar 

  98. Maslak PG et al (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2(3):224–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Anguille S et al (2017) Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood 130(15):1713–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Scheibenbogen C et al (2002) CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood 100(6):2132–2137

    Article  CAS  PubMed  Google Scholar 

  101. Qazilbash MH et al (2017) PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia 31(3):697–704

    Article  CAS  PubMed  Google Scholar 

  102. van de Loosdrecht A et al (2020) Conversion from MRD positive to negative status in AML patients in CR1 after treatment with an allogeneic leukemia-derived dendritic cell vaccine. Blood 136(Supplement 1):13–14

    Article  Google Scholar 

  103. Ho VT et al (2009) Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation. Proc Natl Acad Sci USA 106(37):15825–15830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rezvani K et al (2009) Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood 113(10):2245–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van den Ancker W et al (2013) Priming of PRAME- and WT1-specific CD8(+) T cells in healthy donors but not in AML patients in complete remission: implications for immunotherapy. Oncoimmunology 2(4):e23971

    Google Scholar 

  106. Schmitt M et al (2008) RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111(3):1357–1365

    Article  CAS  PubMed  Google Scholar 

  107. Ehx G et al (2021) Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 54(4):737-752.e10

    Article  CAS  PubMed  Google Scholar 

  108. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  CAS  PubMed  Google Scholar 

  109. Lichtenegger FS et al (2017) Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol 10(1):142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Myers JA, Miller JS (2021) Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 18(2):85–100

    Article  PubMed  Google Scholar 

  111. Ruggeri L et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295(5562):2097–2100

    Article  CAS  PubMed  Google Scholar 

  112. Ruggeri L et al (2007) Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood 110(1):433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Miller JS et al (2005) Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105(8):3051–3057

    Article  CAS  PubMed  Google Scholar 

  114. Rubnitz JE et al (2010) NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 28(6):955–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Curti A et al (2016) Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients. Clin Cancer Res 22(8):1914–1921

    Article  CAS  PubMed  Google Scholar 

  116. Gasteiger G et al (2013) IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med 210(6):1167–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bachanova V et al (2014) Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 123(25):3855–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Marabondo S, Kaufman HL (2017) High-dose IL-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf 16(12):1347–1357

    Article  CAS  PubMed  Google Scholar 

  119. Cooper MA et al (2002) In vivo evidence for a dependence on IL-15 for survival of natural killer cells. Blood 100(10):3633–3638

    Article  CAS  PubMed  Google Scholar 

  120. Cooley S et al (2019) First-in-human trial of rhIL-15 and haploidentical natural killer cell therapy for advanced acute myeloid leukemia. Blood Adv 3(13):1970–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Björklund AT et al (2018) Complete remission with reduction of high-risk clones following haploidentical NK-cell therapy against MDS and AML. Clin Cancer Res 24(8):1834–1844

    Article  PubMed  CAS  Google Scholar 

  122. North J et al (2007) Tumor-primed human natural killer cells lyse NK-resistant tumor targets: evidence of a two-stage process in resting NK cell activation. J Immunol 178(1):85–94

    Article  CAS  PubMed  Google Scholar 

  123. Fehniger TA et al (2018) A phase 1 trial of CNDO-109-activated natural killer cells in patients with high-risk acute myeloid leukemia. Biol Blood Marrow Transplant 24(8):1581–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Fujisaki H et al (2009) Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 69(9):4010–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Denman CJ et al (2012) Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 7(1):e30264

    Google Scholar 

  126. Ciurea SO et al (2017) Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation. Blood 130(16):1857–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dolstra H et al (2017) Successful transfer of umbilical cord blood CD34(+) hematopoietic stem and progenitor-derived NK cells in older acute myeloid leukemia patients. Clin Cancer Res 23(15):4107–4118

    Article  CAS  PubMed  Google Scholar 

  128. Spanholtz, J., et al., Clinical-Grade generation of active NK cells from cord blood hematopoietic progenitor cells for immunotherapy using a closed-system culture process. PLoS One, 2011. 6(6): p. e20740.

    Google Scholar 

  129. Cany J et al (2013) Natural killer cells generated from cord blood hematopoietic progenitor cells efficiently target bone marrow-residing human leukemia cells in NOD/SCID/IL2Rg(null) mice. PLoS One 8(6):e64384

    Google Scholar 

  130. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23(9):1147–1157

    Article  CAS  PubMed  Google Scholar 

  131. Raghavan M, Bjorkman PJ (1996) Fc receptors and their interactions with immunoglobulins. Annu Rev Cell Dev Biol 12:181–220

    Article  CAS  PubMed  Google Scholar 

  132. Gavin PG et al (2017) Association of polymorphisms in FCGR2A and FCGR3A with degree of trastuzumab benefit in the adjuvant treatment of ERBB2/HER2–positive breast cancer. JAMA Oncol 3(3):335

    Article  PubMed  PubMed Central  Google Scholar 

  133. DeVita VT, Lawrence TS, Rosenberg SA (2008) DeVita, Hellman, and Rosenberg’s cancer: principles and practice of oncology. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  134. Steplewski Z, Lubeck MD, Koprowski H (1983) Human macrophages armed with murine immunoglobulin G2a antibodies to tumors destroy human cancer cells. Science 221(4613):865–867

    Article  CAS  PubMed  Google Scholar 

  135. Trauth BC et al (1989) Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 245(4915):301–305

    Article  CAS  PubMed  Google Scholar 

  136. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344(14):1058–1066

    Google Scholar 

  137. Boross P et al (2011) The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden. Haematologica 96(12):1822–1830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li S et al (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7(4):301–311

    Article  CAS  PubMed  Google Scholar 

  139. Fenwarth L et al (2020) Biomarkers of Gemtuzumab Ozogamicin Response for Acute Myeloid Leukemia Treatment. Int J Mol Sci 21(16)

    Google Scholar 

  140. Petersdorf SH et al (2013) A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood 121(24):4854–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lambert J et al (2019) Gemtuzumab ozogamicin for de novo acute myeloid leukemia: final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 104(1):113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hills RK et al (2014) Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol 15(9):986–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cortes JE et al (2020) Prevention, recognition, and management of adverse events associated with gemtuzumab ozogamicin use in acute myeloid leukemia. J Hematol Oncol 13(1)

    Google Scholar 

  144. Han YC et al (2021) Development of highly optimized antibody-drug conjugates against CD33 and CD123 for acute myeloid leukemia. Clin Cancer Res 27(2):622–631

    Article  CAS  PubMed  Google Scholar 

  145. Frankel AE et al (2000) Characterization of diphtheria fusion proteins targeted to the human IL-3 receptor. Protein Eng 13(8):575–581

    Article  CAS  PubMed  Google Scholar 

  146. Pemmaraju N et al (2019) Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N Engl J Med 380(17):1628–1637

    Article  CAS  PubMed  Google Scholar 

  147. Yun S et al (2020) Survival outcomes in blastic plasmacytoid dendritic cell neoplasm by first-line treatment and stem cell transplant. Blood Adv 4(14):3435–3442

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tagraxofusp in treating patients with blastic plasmacytoid dendritic cell neoplasm after stem cell transplant

    Google Scholar 

  149. Kovtun Y et al (2018) A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv 2(8):848–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Daver NG et al (2019) Clinical profile of IMGN632, a novel CD123-targeting antibody-drug conjugate (ADC). In: Patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) or blastic plasmacytoid dendritic cell neoplasm (BPDCN). Blood 134(Supplement_1):734

    Google Scholar 

  151. Study of IMGN632 in patients with untreated BPDCN and relapsed/refractory BPDCN

    Google Scholar 

  152. IMGN632 as monotherapy or with venetoclax and/or azacitidine for patients with CD123-positive acute myeloid leukemia

    Google Scholar 

  153. Liu J et al (2015) Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLOS ONE 10(9):e0137345

    Google Scholar 

  154. Feng D et al (2018) Combination treatment with 5F9 and azacitidine enhances phagocytic elimination of acute myeloid leukemia. Blood 132:2729

    Article  Google Scholar 

  155. Sallman D et al (2020) The first-in-class anti-CD47 antibody magrolimab combined with azacitidine is well-tolerated and effective in AML patients: phase 1b results. Blood 136(Supplement 1):330

    Google Scholar 

  156. Nolte MA et al (2009) Timing and tuning of CD27-CD70 interactions: the impact of signal strength in setting the balance between adaptive responses and immunopathology. Immunol Rev 229(1):216–231

    Article  CAS  PubMed  Google Scholar 

  157. Riether C et al (2017) CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med 214(2):359–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Riether C et al (2020) Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents. Nat Med 26(9):1459–1467

    Article  CAS  PubMed  Google Scholar 

  159. Trudel GC et al (2020) CULMINATE: a phase II study of cusatuzumab + azacitidine in patients with newly diagnosed AML, ineligible for intensive chemotherapy. J Clin Oncol 38(15_suppl):TPS7565

    Google Scholar 

  160. Globenewswire. argenx announces 2021 corporate priorities and highlights recent achievements across immunology pipeline. 2021 July 28, 2021]. Available from: https://www.globenewswire.com/fr/news-release/2021/01/08/2155322/0/en/argenx-Announces-2021-Corporate-Priorities-and-Highlights-Recent-Achievements-Across-Immunology-Pipeline.html

  161. Cusatuzumab in combination with background therapy for the treatment of participants with acute myeloid leukemia

    Google Scholar 

  162. Jin L et al (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174

    Article  PubMed  CAS  Google Scholar 

  163. Liu F et al (2020) CD96, a new immune checkpoint, correlates with immune profile and clinical outcome of glioma. Sci Rep 10(1):10768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ma H et al (2019) Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol 12(1):41

    Article  PubMed  PubMed Central  Google Scholar 

  165. Anami Y et al (2020) LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia. Mol Cancer Ther

    Google Scholar 

  166. Saito Y et al (2010) Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci Transl Med 2(17):17ra9

    Google Scholar 

  167. Mozafari R, Moeinian M, Asadollahi-Amin A (2017) Spontaneous complete remission in a patient with acute myeloid leukemia and severe sepsis. Case Rep Hematol 2017:9593750

    PubMed  PubMed Central  Google Scholar 

  168. Perna F (2021) Safety starts with selecting the targets. Mol Ther 29(2):424–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Lu SX et al (2021) Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell 184(15):4032-4047.e31

    Article  CAS  PubMed  Google Scholar 

  170. Jayasinghe RG et al (2018) Systematic analysis of splice-site-creating mutations in cancer. Cell Rep 23(1):270-281.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dong C et al (2021) Intron retention-induced neoantigen load correlates with unfavorable prognosis in multiple myeloma. Oncogene

    Google Scholar 

  172. Kahles A et al (2018) Comprehensive analysis of alternative splicing across tumors from 8705 patients. Cancer Cell 34(2):211-224.e6

    Article  CAS  PubMed  Google Scholar 

  173. (2017) Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32(2):185–203.e13

    Google Scholar 

  174. Perna F et al (2017) Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML. Cancer Cell 32(4):506–519 e5

    Google Scholar 

  175. Schnorfeil FM et al (2015) T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. J Hematol Oncol 8:93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Zhou Q et al (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117(17):4501–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lichtenegger FS et al (2014) Impaired NK cells and increased T regulatory cell numbers during cytotoxic maintenance therapy in AML. Leuk Res 38(8):964–969

    Article  CAS  PubMed  Google Scholar 

  178. Shenghui Z et al (2011) Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer 129(6):1373–1381

    Article  PubMed  CAS  Google Scholar 

  179. Pyzer AR et al (2017) MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood 129(13):1791–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mansour I et al (2016) Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia. Hematology 21(8):447–453

    Article  CAS  PubMed  Google Scholar 

  181. LaBelle JL et al (2002) Negative effect of CTLA-4 on induction of T-cell immunity in vivo to B7–1+, but not B7–2+, murine myelogenous leukemia. Blood 99(6):2146–2153

    Article  CAS  PubMed  Google Scholar 

  182. Chen X et al (2008) Clinical significance of B7–H1 (PD-L1) expression in human acute leukemia. Cancer Biol Ther 7(5):622–627

    Article  CAS  PubMed  Google Scholar 

  183. Kikushige Y et al (2010) TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7(6):708–717

    Article  CAS  PubMed  Google Scholar 

  184. Kong Y et al (2016) T-cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T-cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res 22(12):3057–3066

    Article  CAS  PubMed  Google Scholar 

  185. Wan Y et al (2020) Hyperfunction of CD4 CD25 regulatory T cells in de novo acute myeloid leukemia. BMC Cancer 20(1):472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Binder S, Luciano M, Horejs-Hoeck J (2018) The cytokine network in acute myeloid leukemia (AML): a focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev 43:8–15

    Article  CAS  PubMed  Google Scholar 

  187. Rashidi A, Uy GL (2015) Targeting the microenvironment in acute myeloid leukemia. Curr Hematol Malig Rep 10(2):126–131

    Article  PubMed  PubMed Central  Google Scholar 

  188. Garrido SM et al (2001) Acute myeloid leukemia cells are protected from spontaneous and drug-induced apoptosis by direct contact with a human bone marrow stromal cell line (HS-5). Exp Hematol 29(4):448–457

    Article  CAS  PubMed  Google Scholar 

  189. Bendall LJ et al (1994) Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells. Exp Hematol 22(13):1252–1260

    CAS  PubMed  Google Scholar 

  190. Chakraborty S et al (2021) Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J 11(9):152

    Article  PubMed  PubMed Central  Google Scholar 

  191. Barreyro L et al (2012) Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 120(6):1290–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Mitchell K et al (2018) IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med 215(6):1709–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Barreyro L, Chlon TM, Starczynowski DT (2018) Chronic immune response dysregulation in MDS pathogenesis. Blood 132(15):1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hockendorf U et al (2016) RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell 30(1):75–91

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Perna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perna, F., Espinoza-Gutarra, M., Bombaci, G., Farag, S., Schwartz, J. (2022). Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia. In: Hays, P. (eds) Cancer Immunotherapies. Cancer Treatment and Research, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-96376-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96376-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96375-0

  • Online ISBN: 978-3-030-96376-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics