Skip to main content

Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer

  • Chapter
  • First Online:
Cancer Immunotherapies

Part of the book series: Cancer Treatment and Research ((CTAR,volume 183))

Abstract

T cells specific for major histocompatibility complex (MHC)-presented tumor antigens are capable of inducing durable remissions when adoptively transferred to patients with refractory cancers presenting such antigens. When such T cells are derived from healthy donors, they can be banked for off-the-shelf administration in appropriately tissue matched patients. Therefore, tumor antigen-specific, donor-derived T cells are expected to be a mainstay in the cancer immunotherapy armamentarium. In this chapter, we analyze clinical evidence that tumor antigen-specific donor-derived T cells can induce tumor regressions when administered to appropriately matched patients whose tumors are refractory to standard therapy. We also delineate the landscape of MHC-presented and unconventional tumor antigens recognized by T cells in healthy individuals that have been targeted for adoptive T cell therapy, as well as emerging antigens for which mounting evidence suggests their utility as targets for adoptive T cell therapy. We discuss the growing technological advancements that have facilitated sequence identification of such antigens and their cognate T cells, and applicability of such technologies in the pre-clinical and clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fefer A, Buckner CD, Thomas ED, Cheever MA, Clift RA, Glucksberg H et al (1977) Cure of hematologic neoplasia with transplantation of marrow from identical twins. N Engl J Med 297(3):146–148

    Article  CAS  PubMed  Google Scholar 

  2. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD et al (2010) Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. 300(19):1068–73. https://doi.org/10.1056/NEJM197905103001902

  3. Apperley JF, Jones L, Hale G, Waldmann H, Hows J, Rombos Y et al (1986) Bone marrow transplantation for patients with chronic myeloid leukaemia: T-cell depletion with Campath-1 reduces the incidence of graft-versus-host disease but may increase the risk of leukaemic relapse. Bone Marrow Transplant 1(1):53–66

    CAS  PubMed  Google Scholar 

  4. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G et al (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76(12):2462–2465

    Article  CAS  PubMed  Google Scholar 

  5. Mackinnon S, Papadopoulos E, Carabasi M, Reich L, Collins N, Boulad F et al (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood 86(4):1261–1268

    Article  CAS  PubMed  Google Scholar 

  6. Collins RH, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin S et al (1997) Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15(2):433–44

    Google Scholar 

  7. Smit WM, Rijnbeek M, Van Bergen CAM, Fibbe WE, Willemze R, Frederik Falkenburg JH (1998) T cells recognizing leukemic CD34+ progenitor cells mediate the antileukemic effect of donor lymphocyte infusions for relapsed chronic myeloid leukemia after allogeneic stem cell transplantation. Proc Natl Acad Sci USA 95(17):10152–10157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marijt WAE, Heemskerk MHM, Kloosterboer FM, Goulmy E, Kester MGD, Van der Hoorn MAWG et al (2003) Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia. Proc Natl Acad Sci USA 100(5):2742–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. de Rijke B, van Horssen-Zoetbrood A, Beekman JM, Otterud B, Maas F, Woestenenk R et al (2005) A frameshift polymorphism in P2X5 elicits an allogeneic cytotoxic T lymphocyte response associated with remission of chronic myeloid leukemia. J Clin Invest 115(12):3506–3516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Griffioen M, Kessler JH, Borghi M, van Soest RA, van der Minne CE, Nouta J et al (2006) Detection and functional analysis of CD8+ T cells specific for PRAME: a target for T-cell therapy. Clin Cancer Res 12(10):3130–3136

    Article  CAS  PubMed  Google Scholar 

  11. Molldrem JJ, Lee PP, Wang C, Felio K, Kantarjian HM, Champlin RE et al (2000) Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat Med 6(9):1018–23

    Google Scholar 

  12. Molldrem J, Dermime S, Parker K, Jiang Y, Mavroudis D, Hensel N et al (1996) Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88(7):2450–2457

    Article  CAS  PubMed  Google Scholar 

  13. Molldrem JJ, Lee PP, Wang C, Champlin RE, Davis MM (1999) A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia 1. Cancer Res 59:2675–2681

    CAS  PubMed  Google Scholar 

  14. Doubrovina ES, Doubrovin MM, Lee S, Shieh JH, Heller G, Pamer E et al (2004) In vitro stimulation with WT1 peptide-loaded epstein-barr virus-positive B cells elicits high frequencies of WT1 peptide-specific T cells with in vitro and in vivo tumoricidal activity. Clin Cancer Res 10(21):7207–7219

    Article  CAS  PubMed  Google Scholar 

  15. Doubrovina E, Carpenter T, Pankov D, Selvakumar A, Hasan A, O’Reilly RJ (2012) Mapping of novel peptides of WT-1 and presenting HLA alleles that induce epitope-specific HLA-restricted T cells with cytotoxic activity against WT-1+ leukemias. Blood 120(8):1633–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood 95(1):286–293

    Article  CAS  PubMed  Google Scholar 

  17. Tyler EM, Jungbluth AA, O’Reilly RJ, Koehne G (2013) WT1-specific T-cell responses in high-risk multiple myeloma patients undergoing allogeneic T cell–depleted hematopoietic stem cell transplantation and donor lymphocyte infusions. Blood 121(2):308–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ishikawa T, Fujii N, Imada M, Aoe M, Meguri Y, Inomata T et al (2017) Graft-versus-leukemia effect with a WT1-specific T-cell response induced by azacitidine and donor lymphocyte infusions after allogeneic hematopoietic stem cell transplantation. Cytotherapy 19(4):514–520

    Article  CAS  PubMed  Google Scholar 

  19. Tyler EM, Jungbluth AA, Gnjatic S, O’Reilly RJ, Koehne G (2014) Cancer-testis antigen 7 expression and immune responses following allogeneic stem cell transplantation for multiple myeloma. Cancer Immunol Res 2(6):547–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant JP et al (1998) Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest 101(10):2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bocchia M, Korontsvit T, Xu Q, Mackinnon S, Yang SY, Sette A et al (1996) Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood 87(9):3587–92

    Google Scholar 

  22. Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR et al (2001) Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein. Blood 98(10):2887–2893

    Article  CAS  PubMed  Google Scholar 

  23. Butt NM, Rojas JM, Wang L, Christmas SE, Abu-Eisha HM, Clark RE (2005) Circulating bcr-abl-specific CD8+ T cells in chronic myeloid leukemia patients and healthy subjects. Haematologica 90(10 SE-Comparative Studies):1315–23

    Google Scholar 

  24. Wu CJ, Biernacki M, Kutok JL, Rogers S, Chen L, Yang X-F et al (2005) Graft-versus-leukemia target antigens in chronic myelogenous leukemia are expressed on myeloid progenitor cells. Clin Cancer Res 11(12):4504–4511

    Article  CAS  PubMed  Google Scholar 

  25. Wang Q, Li M, Wang Y, Zhang Y, Jin S, Xie G et al (2008) RNA interference targeting CML66, a novel tumor antigen, inhibits proliferation, invasion and metastasis of HeLa cells. Cancer Lett 269(1):127–138

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Choi J, Zeng W, Rogers SA, Alyea EP, Rheinwald JG et al (2010) Graft-versus-leukemia antigen CML66 elicits coordinated B-cell and T-cell immunity after donor lymphocyte infusion. Clin Cancer Res 16(10):2729–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suemori K, Fujiwara H, Ochi T, Azuma T, Yamanouchi J, Narumi H et al (2008) Identification of an epitope derived from CML66, a novel tumor-associated antigen expressed broadly in human leukemia, recognized by human leukocyte antigen-A*2402-restricted cytotoxic T lymphocytes. Cancer Sci 99(7):1414–1419

    Article  CAS  PubMed  Google Scholar 

  28. van Baren N, Chambost H, Ferrant A, Michaux L, Ikeda H, Millard I et al (1998) PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br J Haematol 102(5):1376–9

    Google Scholar 

  29. Oehler VG, Guthrie KA, Cummings CL, Sabo K, Wood BL, Gooley T et al (2009) The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood 114(15):3299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. De Carvalho DD, Binato R, Pereira WO, Leroy JMG, Colassanti MD, Proto-Siqueira R et al (2011) BCR–ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene 30(2):223–33

    Google Scholar 

  31. Kessler JH, Beekman NJ, Bres-Vloemans SA, Verdijk P, Van Veelen PA, Kloosterman-Joosten AM et al (2001) Efficient identification of novel HLA-A * 0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J Exp Med 193(1):73–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sommermeyer D, Conrad H, Krönig H, Gelfort H, Bernhard H, Uckert W (2013) NY-ESO-1 antigen-reactive T cell receptors exhibit diverse therapeutic capability. Int J Cancer 132(6):1360–1367

    Article  CAS  PubMed  Google Scholar 

  33. Zarour HM, Storkus WJ, Brusic V, Williams E, Kirkwood JM (2000) NY-ESO-1 Encodes DRB1*0401-restricted epitopes recognized by melanoma-reactive CD4+ T cells. Cancer Res 60(17):4946–4952

    Google Scholar 

  34. Zarour HM, Maillere B, Brusic V, Coval K, Williams E, Pouvelle-Moratille S et al (2002) NY-ESO-1 119–143 is a promiscuous major histocompatibility complex class II T-helper epitope recognized by Th1- and Th2-type tumor-reactive CD4+ T cells. Cancer Res 62(1):213–218

    Google Scholar 

  35. Kayser S, Boβ C, Feucht J, Witte K-E, Scheu A, Bülow H-J et al (2015) Rapid generation of NY-ESO-1-specific CD4+ THELPER1 cells for adoptive T-cell therapy. Oncoimmunology 4(5):e1002723

    Google Scholar 

  36. Valmori D, Souleimanian NE, Hesdorffer CS, Old LJ, Ayyoub M (2005) Quantitative and qualitative assessment of circulating NY-ESO-1 specific CD4+ T cells in cancer-free individuals. Clin Immunol 117(2):161–167

    Article  CAS  PubMed  Google Scholar 

  37. Hofmann S, Schmitt M, Götz M, Döhner H, Wiesneth M, Bunjes D et al (2019) Donor lymphocyte infusion leads to diversity of specific T cell responses and reduces regulatory T cell frequency in clinical responders. Int J Cancer 144(5):1135–1146

    Article  CAS  PubMed  Google Scholar 

  38. van Balen P, Jedema I, van Loenen MM, de Boer R, van Egmond HM, Hagedoorn RS et al (2020) HA-1H T-cell receptor gene transfer to redirect virus-specific T cells for treatment of hematologic malignancies after allogeneic stem cell transplantation: a phase 1 clinical study. Front Immunol 20:1804

    Article  CAS  Google Scholar 

  39. Warren EH, Fujii N, Akatsuka Y, Chaney CN, Mito JK, Loeb KR et al (2010) Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood 115(19):3869–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meij P, Jedema I, van der Hoorn MAWG, Bongaerts R, Cox L, Wafelman AR et al (2012) Generation and administration of HA-1-specific T-cell lines for the treatment of patients with relapsed leukemia after allogeneic stem cell transplantation: a pilot study. Haematologica 97(8):1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chapuis AG, Egan DN, Bar M, Schmitt TM, Mcafee MS, Paulson KG et al (2019) T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med 25

    Google Scholar 

  42. Comoli P, Basso S, Riva G, Barozzi P, Guido I, Gurrado A et al (2017) BCR-ABL–specific T-cell therapy in Ph+ ALL patients on tyrosine-kinase inhibitors. Blood 129(5):582–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM et al (2013) Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 5(174):174ra27–174ra27

    Google Scholar 

  44. Prockop SE, Doubrovina E, Adams R, Boulad F, Kernan NA, O’Reilly RJ (2013) Adoptive transfer of WT-1 specific HLA class 2 restricted donor-derived T-cells induces sustained remission of AML relapse post transplant presenting as leukemia cutis. Blood 122(21):2085–2085

    Article  Google Scholar 

  45. Lulla PD, Naik S, Vasileiou S, Tzannou I, Watanabe A, Kuvalekar M et al (2021) Clinical effects of administering leukemia-specific donor T cells to patients with AML/MDS after allogeneic transplant. Blood 137(19):2585–97

    Google Scholar 

  46. van Bergen CAM, van Luxemburg-Heijs SAP, de Wreede LC, Eefting M, von dem Borne PA, van Balen P et al (2017) Selective graft-versus-leukemia depends on magnitude and diversity of the alloreactive T cell response. J Clin Invest 127(2):517–529

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bleakley M, Riddell SR (2011) Exploiting T cells specific for human minor histocompatibility antigens for therapy of leukemia. Immunol Cell Biol 89(3):396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bykova NA, Malko DB, Efimov GA (2018) In silico analysis of the minor histocompatibility antigen landscape based on the 1000 genomes project. Front Immunol 1819

    Google Scholar 

  49. Kloosterboer FM, van Luxemburg-Heijs SA, van Soest RA, Barbui AM, van Egmond HM, Strijbosch MP et al (2004) Direct cloning of leukemia-reactive T cells from patients treated with donor lymphocyte infusion shows a relative dominance of hematopoiesis-restricted minor histocompatibility antigen HA-1 and HA-2 specific T cells. Leukemia 18(4):798–808

    Google Scholar 

  50. Molldrem JJ, Clave E, Jiang YZ, Mavroudis D, Raptis A, Hensel N et al (1997) Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood 90(7):2529–2534

    Article  CAS  PubMed  Google Scholar 

  51. Rao NV, Wehner NG, Marshall BC, Gray WR, Gray BH, Hoidal JR (1991) Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. Structural and functional properties. J Biol Chem 266(15):9540–8

    Google Scholar 

  52. Yang T-H, John LS St, Garber HR, Kerros C, Ruisaard KE, Clise-Dwyer K et al (2018) Membrane-associated proteinase 3 on granulocytes and acute myeloid leukemia inhibits T cell proliferation. J Immunol Author Choice 201(5):1389

    Google Scholar 

  53. Qazilbash MH, Wieder E, Thall PF, Wang X, Rios R, Lu S et al (2017) PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia 31(3):697–704

    Google Scholar 

  54. Alatrash G, Molldrem JJ, Qazilbash MH (2017) Targeting PR1 in myeloid leukemia. Oncotarget 9(4):4280–4281

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bornhäuser M, Thiede C, Platzbecker U, Kiani A, Oelschlaegel U, Babatz J et al (2011) Prophylactic transfer of BCR-ABL–, PR1-, and WT1-reactive donor T cells after T cell–depleted allogeneic hematopoietic cell transplantation in patients with chronic myeloid leukemia. Blood 117(26):7174–7184

    Article  PubMed  CAS  Google Scholar 

  56. Buckler AJ, Pelletier J, Haber DA, Glaser T, Housman DE (1991) Isolation, characterization, and expression of the murine Wilms’ tumor gene (WT1) during kidney development. Mol Cell Biol 11(3):1707–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mundlos S, Pelletier J, Darveau A, Bachmann M, Winterpacht A, Zabel B (1993) Nuclear localization of the protein encoded by the Wilms’ tumor gene WT1 in embryonic and adult tissues. Development 119(4):1329–1341

    Article  CAS  PubMed  Google Scholar 

  58. Keilholz U, Menssen HD, Gaiger A, Menke A, Oji Y, Oka Y et al (2005) Wilms’ tumour gene 1 (WT1) in human neoplasia. Leuk 19(8):1318–23

    Google Scholar 

  59. Tatsumi N, Oji Y, Tsuji N, Tsuda A, Higashio M, Aoyagi S et al (2008) Wilms’ tumor gene WT1-shRNA as a potent apoptosis-inducing agent for solid tumors. Int J Oncol 32(3):701–711

    CAS  PubMed  Google Scholar 

  60. Glienke W, Maute L, Koehl U, Esser R, Milz E, Bergmann L (2007) Effective treatment of leukemic cell lines with wt1 siRNA. Leuk 21(10):2164–70

    Google Scholar 

  61. Doubrovina ES, Doubrovin MM, Lee S, Shieh J-H, Heller G, Pamer E et al (2004) In vitro stimulation with WT1 peptide-loaded epstein-barr virus-positive B cells elicits high frequencies of WT1 peptide-specific T cells with in vitro and in vivo tumoricidal activity. Clin Cancer Res 10(21):7207–7219

    Article  CAS  PubMed  Google Scholar 

  62. Gao L, Xue SA, Hasserjian R, Cotter F, Kaeda J, Goldman JM et al (2003) Human cytotoxic T lymphocytes specific for Wilms’ tumor antigen-1 inhibit engraftment of leukemia-initiating stem cells in non-obese diabetic-severe combined immunodeficient recipients. Transplantation 75(9):1429–1436

    Article  PubMed  Google Scholar 

  63. Xue S-A, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A et al (2005) Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene–transduced human T cells. Blood 106(9):3062–3067

    Article  CAS  PubMed  Google Scholar 

  64. Maslak PG, Dao T, Bernal Y, Chanel SM, Zhang R, Frattini M et al (2018) Phase 2 trial of a multivalent WT1 peptide vaccine (galinpepimut-S) in acute myeloid leukemia. Blood Adv 2(3):224–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Koehne G, Devlin S, Chung DJ, Landau HJ, Korde N, Mailankody S et al (2017) WT1 heteroclitic epitope immunization following autologous stem cell transplantation in patients with high-risk multiple myeloma (MM). 35(15_suppl):8016–8016. https://doi.org/10.1200/JCO20173515_suppl8016

  66. O’Cearbhaill RE, Gnjatic S, Aghajanian C, Iasonos A, Konner JA, Losada N et al (2018) A phase I study of concomitant galinpepimut-s (GPS) in combination with nivolumab (nivo) in patients (pts) with WT1+ ovarian cancer (OC) in second or third remission. 36(15_suppl):5553–5553. https://doi.org/10.1200/JCO20183615_suppl5553

  67. Ikeda H, Lethé B, Lehmann F, Van BN, Baurain J-F, De SC et al (1997) Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity 6(2):199–208

    Article  CAS  PubMed  Google Scholar 

  68. Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L et al (2017) A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest 127(7):1–14

    Article  Google Scholar 

  69. Chang AY, Dao T, Gejman RS, Jarvis CA, Scott A, Dubrovsky L et al (2017) A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest 127(7):2705

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kalaora S, Sang Lee J, Barnea E, Levy R, Greenberg P, Alon M et al Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma

    Google Scholar 

  71. Keller M, Ebstein F, Bürger E, Textoris-Taube K, Gorny X, Urban S et al (2015) The proteasome immunosubunits, PA28 and ER-aminopeptidase 1 protect melanoma cells from efficient MART-126-35-specific T-cell recognition. Eur J Immunol 45(12):3257–3268

    Article  CAS  PubMed  Google Scholar 

  72. Stanojevic M, Hont AB, Geiger A, O’Brien S, Ulrey R, Grant M et al (2021) Identification of novel HLA-restricted preferentially expressed antigen in melanoma peptides to facilitate off-the-shelf tumor-associated antigen-specific T-cell therapies. Cytotherapy 23(8):694–703

    Article  CAS  PubMed  Google Scholar 

  73. Mahoney KE, Shabanowitz J, Hunt DF (2021) MHC phosphopeptides: promising targets for immunotherapy of cancer and other chronic diseases. Mol Cell Proteomics 20:100112

    Google Scholar 

  74. Cobbold M, De La Peña H, Norris A, Polefrone JM, Qian J, English AM et al (2013) MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia. Sci Transl Med 5(203):1–11

    Article  CAS  Google Scholar 

  75. Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST et al (2006) Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci 103(40):14889–14894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Engelhard VH, Obeng RC, Cummings KL, Petroni GR, Ambakhutwala AL, Chianese-Bullock KA et al (2020) MHC-restricted phosphopeptide antigens: preclinical validation and first-in-humans clinical trial in participants with high-risk melanoma. J Immunother Cancer 8(1):e000262

    Google Scholar 

  77. Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J et al (2008) Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat Immunol 9(11):1236–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kessler JH, Bres-Vloemans SA, van Veelen PA, de Ru A, Huijbers IJG, Camps M et al (2006) BCR-ABL fusion regions as a source of multiple leukemia-specific CD8+ T-cell epitopes. Leuk 20(10):1738–50.

    Google Scholar 

  79. Cai A, Keskin DB, DeLuca DS, Alonso A, Zhang W, Zhang GL et al (2012) Mutated BCR-ABL generates immunogenic T-cell epitopes in CML patients. Clin Cancer Res 18(20):5761–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Riva G, Luppi M, Barozzi P, Quadrelli C, Basso S, Vallerini D et al (2010) Emergence of BCR-ABL–specific cytotoxic T cells in the bone marrow of patients with Ph+ acute lymphoblastic leukemia during long-term imatinib mesylate treatment. Blood 115(8):1512–1518

    Article  PubMed  Google Scholar 

  81. Rojas JM, Knight K, Wang L, Clark RE (2007) Clinical evaluation of BCR-ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leuk 21(11):2287–95

    Google Scholar 

  82. Cathcart K, Pinilla-Ibarz J, Korontsvit T, Schwartz J, Zakhaleva V, Papadopoulos EB et al (2004) A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103(3):1037–1042

    Article  CAS  PubMed  Google Scholar 

  83. Pinilla-Ibarz J, Cathcart K, Korontsvit T, Soignet S, Bocchia M, Caggiano J et al (2000) Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood 95(5):1781–1787

    Article  CAS  PubMed  Google Scholar 

  84. Zamora AE, Crawford JC, Allen EK, Guo XJ, Bakke J, Carter RA et al (2019) Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8+ T cell responses. Sci Transl Med 11(498):eaat8549

    Google Scholar 

  85. Ali M, Foldvari Z, Giannakopoulou E, Böschen ML, Strønen E, Yang W et al (2019) Induction of neoantigen-reactive T cells from healthy donors. Nat Protoc 14(6):1926–1943

    Article  CAS  PubMed  Google Scholar 

  86. Kato T, Matsuda T, Ikeda Y, Park J-H, Leisegang M, Yoshimura S et al (2018) Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget 9(13):11009

    Article  PubMed  PubMed Central  Google Scholar 

  87. Matsuda T, Leisegang M, Park J-H, Ren L, Kato T, Ikeda Y et al (2018) Induction of neoantigen-specific cytotoxic T cells and construction of T-cell receptor-engineered T cells for ovarian cancer. Clin Cancer Res 24(21):5357–67

    Google Scholar 

  88. Strønen E, Toebes M, Kelderman S, Van Buuren MM, Yang W, Van Rooij N et al (2016) Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science (80- ) 352(6291):1337–41

    Google Scholar 

  89. Duval A, Reperant M, Hamelin R (2002) Comparative analysis of mutation frequency of coding and non coding short mononucleotide repeats in mismatch repair deficient colorectal cancers. Oncogene 21(52):8062–6

    Google Scholar 

  90. Mardis ER (2019) Neoantigens and genome instability: impact on immunogenomic phenotypes and immunotherapy response. Genome Med 11(1):1–12

    Google Scholar 

  91. Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B et al (2019) Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 121(10):809–18

    Google Scholar 

  92. Schwitalle Y, Linnebacher M, Ripberger E, Gebert J, Doeberitz MVK (2004) Immunogenic peptides generated by frameshift mutations in DNA mismatch repair-deficient cancer cells. 4:1–10

    Google Scholar 

  93. Linnebacher M, Gebert J, Rudy W, Woerner S, Yuan YP, Bork P et al (2001) Frameshift peptide-derived T-cell epitopes: a source of novel tumor-specific antigens. Int J Cancer 93(1):6–11

    Google Scholar 

  94. Garbe Y, Maletzki C, Linnebacher M (2011) An MSI tumor specific frameshift mutation in a coding microsatellite of MSH3 encodes for HLA-A0201-restricted CD8+ cytotoxic T cell epitopes. PLoS One 6(11)

    Google Scholar 

  95. Roudko V, Bozkus CC, Orfanelli T, McClain CB, Carr C, O’Donnell T et al (2020) Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell 183(6):1634-1649.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kloor M, Reuschenbach M, Pauligk C, Karbach J, Rafiyan M-R, Al-Batran S-E et al (2020) A frameshift peptide neoantigen-based vaccine for mismatch repair-deficient cancers: a phase I/IIa clinical trial. Clin Cancer Res 26(17):4503–4510

    Article  CAS  PubMed  Google Scholar 

  97. Mohamed YS, Bashawri LA, Vatte C, Abu-Rish EY, Cyrus C, Khalaf WS et al (2016) The in vitro generation of multi-tumor antigen-specific cytotoxic T cell clones: candidates for leukemia adoptive immunotherapy following allogeneic stem cell transplantation. Mol Immunol 77:79–88

    Google Scholar 

  98. Gerdemann U, Katari U, Christin AS, Cruz CR, Tripic T, Rousseau A et al (2011) Cytotoxic T lymphocytes simultaneously targeting multiple tumor-associated antigens to treat EBV negative lymphoma. Mol Ther 19(12):2258–68

    Google Scholar 

  99. Vasileiou S, Lulla PD, Tzannou I, Watanabe A, Kuvalekar M, Callejas WL et al (2021) T-cell therapy for lymphoma using nonengineered multiantigen-targeted T cells is safe and produces durable clinical effects. J Clin Oncol 39(13):1415–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hont AB, Cruz CR, Ulrey R, O’Brien B, Stanojevic M, Datar A et al (2019) Immunotherapy of relapsed and refractory solid tumors with ex vivo expanded multi-tumor associated antigen specific cytotoxic T lymphocytes: a phase I study. J Clin Oncol 37(26):2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dave H, Terpilowski M, Mai M, Toner K, Grant M, Stanojevic M et al (2021) Tumor associated antigen specific T cells with nivolumab are safe and persist in vivo in rel/ref Hodgkin Lymphoma. Blood Adv

    Google Scholar 

  102. Em J, Sh K, Rh S, Dm P (1989) Activation of gamma delta T cells in the primary immune response to mycobacterium tuberculosis. Science 244(4905):713–716

    Article  Google Scholar 

  103. Ravens S, Schultze-Florey C, Raha S, Sandrock I, Drenker M, Oberdörfer L et al (2017) Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 18(4):393–401

    Google Scholar 

  104. Knight A, Madrigal AJ, Grace S, Sivakumaran J, Kottaridis P, Mackinnon S et al (2010) The role of Vδ2-negative γδ T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 116(12):2164–2172

    Article  CAS  PubMed  Google Scholar 

  105. Scheper W, van Dorp S, Kersting S, Pietersma F, Lindemans C, Hol S et al (2013) γδT cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leuk 27(6):1328–38

    Google Scholar 

  106. Vila LM, Haftel HM, Park HS, Lin MS, Romzek NC, Hanash SM et al (1995) Expansion of mycobacterium-reactive gamma delta T cells by a subset of memory helper T cells. Infect Immun 63(4):1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Behr C, Poupot R, Peyrat MA, Poquet Y, Constant P, Dubois P et al (1996) Plasmodium falciparum stimuli for human gammadelta T cells are related to phosphorylated antigens of mycobacteria. Infect Immun 64(8):2892–6

    Google Scholar 

  108. Vavassori S, Kumar A, Wan GS, Ramanjaneyulu GS, Cavallari M, El Daker S et al (2013) Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat Immunol 14(9):908–16

    Google Scholar 

  109. Rigau M, Ostrouska S, Fulford TS, Johnson DN, Woods K, Ruan Z et al (2020) Butyrophilin 2A1 is essential for phosphoantigen reactivity by γδ T cells. Science (80- ) 367(6478)

    Google Scholar 

  110. Godder KT, Henslee-Downey PJ, Mehta J, Park BS, Chiang K-Y, Abhyankar S et al (2007) Long term disease-free survival in acute leukemia patients recovering with increased γδ T cells after partially mismatched related donor bone marrow transplantation. Bone Marrow Transplant 39(12):751–7

    Google Scholar 

  111. Lamb L, Musk P, Ye Z, van Rhee F, Geier S, Tong J-J et al (2001) Human γδ+ T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant 27(6):601–6

    Google Scholar 

  112. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science (80- ) 285(5428):727–9

    Google Scholar 

  113. Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B et al (2019) Commensal microbiota promote lung cancer development via γδ T cells. Cell 176(5):998-1013.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Payne KK, Mine JA, Biswas S, Chaurio RA, Perales-Puchalt A, Anadon CM, et al (2020) BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells. Science (80- ) 369(6506):942–9

    Google Scholar 

  115. Park JH, Kim H-J, Kim CW, Kim HC, Jung Y, Lee H-S et al (2021) Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat Immunol 22(3):336–46

    Google Scholar 

  116. Treiner E, Lantz O (2006) CD1d- and MR1-restricted invariant T cells: of mice and men. Curr Opin Immunol 18(5):519–526

    Article  CAS  PubMed  Google Scholar 

  117. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. 22:817–90. https://doi.org/10.1146/annurev.immunol22012703104608

  118. Han M, Hannick LI, DiBrino M, Robinson MA (1999) Polymorphism of human CD1 genes. Tissue Antigens 54(2):122–127

    Article  CAS  PubMed  Google Scholar 

  119. Barral DC, Brenner MB (2007) CD1 antigen presentation: how it works. Nat Rev Immunol 7(12):929–41

    Google Scholar 

  120. Mori L, Lepore M, De Libero G (2016) The Immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34(1):479–510

    Article  CAS  PubMed  Google Scholar 

  121. de Lalla C, Lepore M, Piccolo FM, Rinaldi A, Scelfo A, Garavaglia C et al (2011) High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur J Immunol 41(3):602–10

    Google Scholar 

  122. Lepore M, de Lalla C, Gundimeda SR, Gsellinger H, Consonni M, Garavaglia C et al (2014) A novel self-lipid antigen targets human T cells against CD1c+ leukemias. J Exp Med 211(7):1363–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Consonni M, Garavaglia C, Grilli A, de Lalla C, Mancino A, Mori L et al (2021) Human T cells engineered with a leukemia lipid-specific TCR enables donor-unrestricted recognition of CD1c-expressing leukemia. Nat Commun 12(1):1–14

    Google Scholar 

  124. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7(1):13404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S et al (2014) Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515(7528):572–576

    Article  CAS  PubMed  Google Scholar 

  126. Kalaora S, Barnea E, Merhavi-Shoham E, Qutob N, Teer JK, Shimony N et al (2016) Use of HLA peptidomics and whole exome sequencing to identify human immunogenic neo-antigens. Oncotarget 7(5):5110–5117

    Article  PubMed  PubMed Central  Google Scholar 

  127. Chong C, Müller M, Pak H, Harnett D, Huber F, Grun D et al (2020) Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat Commun 11(1):1–21

    Google Scholar 

  128. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naïve repertoire. J Immunol Methods 310(1–2):40–52

    Article  CAS  PubMed  Google Scholar 

  129. Wölfl M, Greenberg PD (2014) Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat Protoc 9(4):950–966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3(5):361–8

    Google Scholar 

  131. Krutzik PO, Clutter MR, Trejo A, Nolan GP (2011) Fluorescent cell barcoding for multiplex flow cytometry. Curr Protoc Cytom 55(1):6.31.1–6.31.15

    Google Scholar 

  132. Dolton G, Tungatt K, Lloyd A, Bianchi V, Theaker SM, Trimby A et al (2015) More tricks with tetramers: a practical guide to staining T cells with peptide-MHC multimers. Immunology 146(1):11–22

    Google Scholar 

  133. Wooldridge L, Lissina A, Cole DK, Van Den Berg HA, Price DA, Sewell AK (2009) Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 126(2):147–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Toebes M, Coccoris M, Bins A, Rodenko B, Gomez R, Nieuwkoop NJ et al (2006) Design and use of conditional MHC class I ligands. Nat Med 12(2):246–51

    Google Scholar 

  135. Bakker AH, Hoppes R, Linnemann C, Toebes M, Rodenko B, Berkers CR et al (2008) Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Proc Natl Acad Sci 105(10):3825–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Anjanappa R, Garcia-Alai M, Kopicki J-D, Lockhauserbäumer J, Aboelmagd M, Hinrichs J et al (2020) Structures of peptide-free and partially loaded MHC class I molecules reveal mechanisms of peptide selection. Nat Commun 11(1):1–11

    Google Scholar 

  137. Saini SK, Tamhane T, Anjanappa R, Saikia A, Ramskov S, Donia M et al (2019) Empty peptide-receptive MHC class I molecules for efficient detection of antigen-specific T cells. Sci Immunol 4(37)

    Google Scholar 

  138. Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P et al (2009) Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 6(7):520–6

    Google Scholar 

  139. Bentzen AK, Marquard AM, Lyngaa R, Saini SK, Ramskov S, Donia M et al (2016) Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat Biotechnol 34(10):1037–45

    Google Scholar 

  140. Leen AM, Bollard CM, Mendizabal AM, Shpall EJ, Szabolcs P, Antin JH et al (2013) Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Blood 121(26):5113–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tzannou I, Papadopoulou A, Naik S, Leung K, Martinez CA, Ramos CA et al (2017) Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, epstein-barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol 35(31):3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Withers B, Blyth E, Clancy LE, Yong A, Fraser C, Burgess J et al (2017) Long-term control of recurrent or refractory viral infections after allogeneic HSCT with third-party virus-specific T cells. Blood Adv 1(24):2193–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaki Molvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molvi, Z., O’Reilly, R.J. (2022). Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. In: Hays, P. (eds) Cancer Immunotherapies. Cancer Treatment and Research, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-96376-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96376-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96375-0

  • Online ISBN: 978-3-030-96376-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics