Skip to main content

Modeling and Learning of Hierarchical Decision Models: The Case of the Choquet Integral

  • Chapter
  • First Online:
Intelligent Decision Support Systems

Part of the book series: Multiple Criteria Decision Making ((MCDM))

  • 377 Accesses

Abstract

In this paper, we elaborate on two important developments in the realm of multi-criteria decision aid, which have attracted increasing attention in the recent past: first, the idea of leveraging methods from preference learning for the data-driven (instead of human-centric) construction of decision models, and second, the use of hierarchical instead of “flat” decision models. In particular, we show the advantage of combining the two, that is, of learning hierarchical MCDA models from suitable training data. This approach is illustrated by means of a concrete example, namely the learning of tree-structured combinations of the Choquet integral as a versatile aggregation function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It shall be noted that piecewise affine functions are necessarily continuous.

References

  1. Allais M (1953) Le comportement de l’homme rationnel devant le risque, critique des postulats et axiomes de l’école américaine. Econometrica 21:503–546

    Article  Google Scholar 

  2. Angilella S, Corrente S, Greco S, Slowinski R (2013) Multiple criteria hierarchy process for the Choquet integral. In: 7th International conference on evolutionary multi-criterion optimization, Shaffield, pp 475–489

    Google Scholar 

  3. Angilella S, Corrente S, Greco S, Slowinski R (2016) Robust ordinal regression and stochastic multiobjective acceptability analysis in multiple criteria hierarchy process for the Choquet integral preference model. Omega 63:154–169

    Article  Google Scholar 

  4. Benabbou N, Perny P, Viappiani P (2017) Incremental elicitation of Choquet capacities for multicriteria choice, ranking and sorting problems. Artif Intell 246:152–180. https://doi.org/10.1016/j.artint.2017.02.001

    Article  Google Scholar 

  5. Bengio Y (2009) Learning deep architectures for AI. Found Trends Mach Learn 2(1):1–127

    Article  Google Scholar 

  6. Bresson R, Cohen J, Hüllermeier E, Labreuche C, Sebag M (2020) Neural representation and learning of hierarchical 2-additive Choquet integrals. In: Proc. 28th int. joint conf. on artificial intelligence (IJCAI), Yokohoma, pp 1984–1991

    Google Scholar 

  7. Bresson R, Cohen J, Hüllermeier E, Labreuche C, Sebag M (2021) On the identifiability of hierarchical decision models. In: Proceedings of the 18th international conference on principles of knowledge representation and reasoning (KR 2021) Hanoi, pp 151–161. https://doi.org/10.24963/kr.2021/15

  8. Choquet G (1953) Theory of capacities. Ann Inst Fourier 5:131–295

    Article  Google Scholar 

  9. Corrente S, Greco S, Slowiński R (2012) Multiple criteria hierarchy process in robust ordinal regression. Decis Support Syst 53:660–674

    Article  Google Scholar 

  10. Ellsberg D (1961) Risk, ambiguity, and the Savage axioms. Q J Econom 75:643–669

    Article  Google Scholar 

  11. Fürnkranz J, Hüllermeier E (eds) (2010) Preference learning. Springer, Berlin

    Google Scholar 

  12. Grabisch M, Labreuche C (2010) A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Ann Oper Res 175:247–286

    Article  Google Scholar 

  13. Grabisch M, Roubens M (1999) An axiomatic approach to the concept of interaction among players in cooperative games. Int J Game Theory 28:547–565

    Article  Google Scholar 

  14. Grabisch M (1997) K-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst 92:167–189

    Article  Google Scholar 

  15. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Int. conf. on machine learning (ICML). http://arxiv.org/abs/1502.03167

  16. Jacquet-Lagrèze E, Siskos Y (1982) Assessing a set of additive utility functions for multicriteria decision making: the UTA method. Eur J Oper Res 10:151–164

    Article  Google Scholar 

  17. Keeney RL, Raiffa H (1976) Decision with multiple objectives. Wiley, New York

    Google Scholar 

  18. Krantz D, Luce R, Suppes P, Tversky A (1971) Foundations of measurement, vol 1: additive and polynomial representations. Academic, New York

    Google Scholar 

  19. Labreuche C (2018) An axiomatization of the Choquet integral and its utility functions without any commensurability assumption. Ann Oper Res 271(2), 701–735

    Article  Google Scholar 

  20. Marichal JL (2000) An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Trans Fuzzy Syst 8(6):800–807

    Article  Google Scholar 

  21. Murofushi T, Soneda S (1993) Techniques for reading fuzzy measures (III): interaction index. In: 9th Fuzzy system symposium Sapporo, May, pp 693–696

    Google Scholar 

  22. Ovchinnikov S (2002) Max-min representation of piecewise linear functions. Beiträge zur Algebra Geom 43(1):297–302

    Google Scholar 

  23. Perny P, Viappiani P, Boukhatem A (2016) Incremental preference elicitation for decision making under risk with the rank-dependent utility model. In: Proceedings of the conference on uncertainty in artificial intelligence (UAI-16), New York City, NY, June 2016

    Google Scholar 

  24. Roy B (1985) Méthodologie multicritère d’aide à la décision. Economica, Paris

    Google Scholar 

  25. Roy B (1999) Decision aiding today: What should we expect? In: Gal T, Stewart T, Hanne T (eds) Multicriteria decision making: advances in MCDM models, algorithms, theory and applications. Kluwer Academic, Boston, pp 1.1–1.35

    Google Scholar 

  26. Schmeidler D (1989) Subjective probability and expected utility without additivity. Econometrica 57(3):571–587

    Article  Google Scholar 

  27. Senge R, Hüllermeier E (2011) Top-down induction of fuzzy pattern trees. IEEE Trans Fuzzy Syst 19(2):241–252

    Article  Google Scholar 

  28. Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games, vol II, No. 28 in Annals of mathematics studies. Princeton University Press, Princeton, pp 307–317

    Google Scholar 

  29. Sobrie O, Gillis N, Mousseau V, Pirlot M (2018) UTA-poly and UTA-splines: additive value functions with polynomial marginals. Eur J Oper Res 264(2):405–418

    Article  Google Scholar 

  30. Sugeno M (1974) Theory of fuzzy integrals and its applications. Ph.D. thesis, Tokyo Institute of Technology

    Google Scholar 

  31. Tehrani AF, Cheng W, Dembczynski K, Hüllermeier E (2012) Learning monotone nonlinear models using the Choquet integral. Mach Learn 89:183–211

    Article  Google Scholar 

  32. Tehrani AF, Cheng W, Hüllermeier E (2012) Preference learning using the Choquet integral: the case of multipartite ranking. IEEE Trans Fuzzy Syst 20(6):1102–1113

    Article  Google Scholar 

  33. Tehrani AF, Hüllermeier E (2013) Ordinal Choquistic regression. In: Montero J, Pasi G, Ciucci D (eds) Proc. EUSFLAT, 8th int. conf. of the European society for fuzzy logic and technology. Atlantis Press, Milano

    Google Scholar 

  34. Tehrani AF, Labreuche C, Hüllermeier E (2014) Choquistic utilitaristic regression. In: Workshop DA2PL, from decision aid to preference learning, Chatenay-Malabry, Nov 2014

    Google Scholar 

  35. Timonin M (2016) Conjoint axiomatization of the Choquet integral for heterogeneous product sets. CoRR abs/1603.08142. http://arxiv.org/abs/1603.08142

  36. Wakker P (1991) Additive representations on rank-ordered sets I: the algebraic approach. J Math Psychol 35:501–531

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eyke Hüllermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hüllermeier, E., Labreuche, C. (2022). Modeling and Learning of Hierarchical Decision Models: The Case of the Choquet Integral. In: Greco, S., Mousseau, V., Stefanowski, J., Zopounidis, C. (eds) Intelligent Decision Support Systems . Multiple Criteria Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-030-96318-7_6

Download citation

Publish with us

Policies and ethics