Skip to main content

Do We Need Change Detection for Dynamic Optimization Problems?: A Survey

  • Conference paper
  • First Online:
Artificial Intelligence and Its Applications (AIAP 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 413))

Abstract

Solving dynamic optimization problems is more challenging than static ones. When a change in the objective landscape occurs, the search process may not be powerful enough to track new optima. For population based algorithms this is referred to as diversity loss problem. Furthermore, the memory of old optima becomes outdated and if not correctly dealt with, the evolution of the search process may be misguided. Recently, a new interesting trend in dealing with optimization in dynamic environments has emerged toward developing new algorithms that are able to effectively handle changes without using any change detection scheme, and hence no extra computational cost is needed. There exist several works in the literature that attempt to maintain diversity without change detection. However, not that much work has been devoted to studies that investigate the possibility to overcome the outdated memory problem without expensive change detection. This study presents a comprehensive survey of the various change detection based methods. As part of this survey, we include a classification of the change detection schemes and we identify the main features of each method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altin, L., Topcuoglu, H.R.: Impact of sensor-based change detection schemes on the performance of evolutionary dynamic optimization techniques. Soft Comput. 22(14), 4741–4762 (2017). https://doi.org/10.1007/s00500-017-2660-1

    Article  Google Scholar 

  2. Altin, L., Topcuoglu, H.R., Ermis, M.: Hybridizing change detection schemes for dynamic optimization problems. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 2086–2093. San Sebastian (2017)

    Google Scholar 

  3. Boulesnane, A., Meshoul, S.: Reinforcement learning for dynamic optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2021, pp. 201–202. Association for Computing Machinery, New York, NY, USA (2021)

    Google Scholar 

  4. Bravo, Y., Luque, G., Alba, E.: Global memory schemes for dynamic optimization. Nat. Comput. 15(2), 319–333 (2015). https://doi.org/10.1007/s11047-015-9497-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Bu, C., Luo, W., Yue, L.: Continuous dynamic constrained optimization with ensemble of locating and tracking feasible regions strategies. IEEE Trans. Evol. Comput. 21, 14–33 (2017)

    Article  Google Scholar 

  6. Campos, M., Krohling, R.A.: Entropy-based bare bones particle swarm for dynamic constrained optimization. Knowl. Based Syst. 97, 203–223 (2016)

    Article  Google Scholar 

  7. Fernandez-Marquez, J.L., Arcos, J.L.: An evaporation mechanism for dynamic and noisy multimodal optimization. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 17–24. Montreal, Québec, Canada (2009)

    Google Scholar 

  8. Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet. Program. Evolvable Mach. 7, 329–354 (2006)

    Article  Google Scholar 

  9. Jiang, S., Yang, S.: A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Trans. Evol. Comput. 21, 65–82 (2017)

    Article  Google Scholar 

  10. Jordehi, A.R.: Particle swarm optimisation for dynamic optimisation problems: a review. Neural Comput. Appl. 25, 1507–1516 (2014)

    Article  Google Scholar 

  11. Kundu, S., Biswas, S., Das, S., Suganthan, P.N.: Crowding-based local differential evolution with speciation-based memory archive for dynamic multimodal optimization. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 33–40. Amsterdam, The Netherlands (2013)

    Google Scholar 

  12. Li, C., Yang, S.: A general framework of multipopulation methods with clustering in undetectable dynamic environments. IEEE Trans. Evol. Comput. 16, 556–577 (2012)

    Article  Google Scholar 

  13. Li, C., Yang, S., Yang, M.: An adaptive multi-swarm optimizer for dynamic optimization problems. Evol. Comput. 22, 559–594 (2014)

    Article  Google Scholar 

  14. Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a dynamic environment. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 51–58. Seattle, Washington, USA (2006)

    Google Scholar 

  15. Masegosa, A.D., Pelta, D., Amo, I.G.D.: The role of cardinality and neighborhood sampling strategy in agent-based cooperative strategies for dynamic optimization problems. Appl. Soft Comput. 14, 577–593 (2014)

    Article  Google Scholar 

  16. Mavrovouniotis, M., Li, C., Yang, S.: A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol. Comput. 33, 1–17 (2017)

    Article  Google Scholar 

  17. Morrison, R.W., Jong, K.A.D.: Triggered hypermutation revisited. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), vol. 2, pp. 1025–1032. La Jolla, CA (2000)

    Google Scholar 

  18. Mukherjee, R., Debchoudhury, S., Das, S.: Modified differential evolution with locality induced genetic operators for dynamic optimization. Eur. J. Oper. Res. 253, 337–355 (2016)

    Article  Google Scholar 

  19. Mukherjee, R., Patra, G.R., Kundu, R., Das, S.: Cluster-based differential evolution with crowding archive for niching in dynamic environments. Inf. Sci. (Ny) 267, 58–82 (2014)

    Article  MathSciNet  Google Scholar 

  20. Nguyen, T.T.: Continuous dynamic optimisation using evolutionary algorithms. Ph.D. thesis, University of Birmingham, Birmingham, U.K. (2011). http://etheses.bham.ac.uk/1296

  21. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  22. Richter, H.: Change detection in dynamic fitness landscapes: an immunological approach. In: 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), pp. 719–724. Coimbatore (2009)

    Google Scholar 

  23. Richter, H.: Detecting change in dynamic fitness landscapes. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1613–1620. Trondheim (2009)

    Google Scholar 

  24. Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic optimization problems. Soft Comput. 13, 1163–1173 (2009)

    Article  Google Scholar 

  25. Richter, H., Yang, S.: Dynamic optimization using analytic and evolutionary approaches: a comparative review. In: Zelinka, I., Snášel, V., Abraham, A. (eds.) Handbook of Optimization. Intelligent Systems Reference Library, vol. 38, pp. 1–28. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30504-7_1

  26. Rohlfshagen, P., Yao, X.: Dynamic combinatorial optimisation problems: an analysis of the subset sum problem. Soft Comput. 15, 1723–1734 (2011)

    Article  Google Scholar 

  27. Sahmoud, S., Topcuoglu, H.R.: A memory-based NSGA-II algorithm for dynamic multi-objective optimization problems. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9598, pp. 296–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31153-1_20

    Chapter  Google Scholar 

  28. Sahmoud, S., Topcuoglu, H.R.: Hybrid techniques for detecting changes in less detectable dynamic multiobjective optimization problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. ACM (2019)

    Google Scholar 

  29. Tinós, R., Yang, S.: Analyzing evolutionary algorithms for dynamic optimization problems based on the dynamical systems approach. In: Yang, S., Yao, X. (eds.) Evolutionary Computation for Dynamic Optimization Problems. Studies in Computational Intelligence, vol. 490, pp. 241–267. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38416-5_10

  30. Tinós, R., Yang, S.: A self-organizing random immigrants genetic algorithm for dynamic optimization problems. Genet. Program. Evolvable Mach. 8, 255–286 (2007)

    Article  Google Scholar 

  31. Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Comput. 9, 815–834 (2005)

    Article  Google Scholar 

  32. Yazdani, D., Cheng, R., Yazdani, D., Branke, J., Jin, Y., Yao, X.: A survey of evolutionary continuous dynamic optimization over two decades–Part A. IEEE Trans. Evolut. Comput. 25, 1 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdennour Boulesnane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boulesnane, A., Meshoul, S. (2022). Do We Need Change Detection for Dynamic Optimization Problems?: A Survey. In: Lejdel, B., Clementini, E., Alarabi, L. (eds) Artificial Intelligence and Its Applications. AIAP 2021. Lecture Notes in Networks and Systems, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-030-96311-8_13

Download citation

Publish with us

Policies and ethics